Random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere

被引:6
作者
Brzezniak, Z. [1 ]
Goldys, B. [2 ]
Le Gia, Q. T. [3 ]
机构
[1] Univ York, Dept Math, York Y010 5DD, N Yorkshire, England
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Stochastic Navier-Stokes equations; Unit sphere; Random dynamical system; SEMIGROUPS; REGULARITY; MANIFOLDS; VECTOR; MOTION; SPACE;
D O I
10.1016/j.jmaa.2015.01.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first prove the existence and uniqueness of the solution to the stochastic Navier-Stokes equations on the rotating 2-dimensional unit sphere. Then we show the existence of an asymptotically compact random dynamical system associated with the equations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:505 / 545
页数:41
相关论文
共 55 条
  • [1] [Anonymous], 1998, RANDOM DYNAMICAL SYS
  • [2] [Anonymous], 1996, LONDON MATH SOC LECT
  • [3] Aubin T., 1998, SOME NONLINEAR PROBL, pxviii+395
  • [4] AVEZ A, 1978, J MECANIQUE, V17, P107
  • [5] Bensoussan A., 1973, J FUNCT ANAL, V13, P195
  • [6] Breckner H., 2000, J. Appl. Math. Stoch. Anal, V133, P239
  • [7] Brzeniak Z., 1996, STOCH STOCH REP, V56, P1, DOI DOI 10.1080/17442509608834032
  • [8] Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains
    Brzezniak, Z.
    Caraballo, T.
    Langa, J. A.
    Li, Y.
    Lukaszewicz, G.
    Real, J.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 3897 - 3919
  • [9] Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise
    Brzezniak, Z
    van Neerven, J
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (02): : 261 - 303
  • [10] Brzezniak Z, 2001, ANN PROBAB, V29, P1796