Convergence of high order curl-conforming finite elements

被引:17
作者
Geuzaine, C [1 ]
Meys, B [1 ]
Dular, P [1 ]
Legros, W [1 ]
机构
[1] Univ Liege, Inst Montefiore, Dept Elect Engn, B-4000 Liege, Belgium
关键词
finite element methods; interpolation; convergence of numerical methods; error analysis; modeling;
D O I
10.1109/20.767237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to present an experimental convergence study of several high order curl-conforming finite elements. Degree of freedom are first mathematically defined in order to interpolate directly a set of analytical functions. The convergence is then analyzed on these functions before being compared with two- and three-dimensional finite element computations.
引用
收藏
页码:1442 / 1445
页数:4
相关论文
共 50 条
[41]   Approximation of the p-Stokes Equations with Equal-Order Finite Elements [J].
Adrian Hirn .
Journal of Mathematical Fluid Mechanics, 2013, 15 :65-88
[42]   MODELLING OF INDUSTRIAL CONVEYORIZED APPLICATORS USING HIGHER ORDER VECTOR FINITE ELEMENTS [J].
Hallac, A. ;
Metaxas, A. C. .
JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY, 2006, 40 (02) :101-108
[43]   Approximation of the p-Stokes Equations with Equal-Order Finite Elements [J].
Hirn, Adrian .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (01) :65-88
[44]   Higher-Order Hexahedral Finite Elements for Structural Dynamics: A Comparative Review [J].
Karpik, Anna ;
Cosco, Francesco ;
Mundo, Domenico .
MACHINES, 2023, 11 (03)
[45]   Optimal a priori estimates for higher order finite elements for elliptic interface problems [J].
Li, Jingzhi ;
Melenk, Jens Markus ;
Wohlmuth, Barbara ;
Zou, Jun .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (1-2) :19-37
[46]   MAXIMUM PRINCIPLES FOR P1-CONFORMING FINITE ELEMENT APPROXIMATIONS OF QUASI-LINEAR SECOND ORDER ELLIPTIC EQUATIONS [J].
Wang, Junping ;
Zhang, Ran .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :626-642
[47]   Unstructured, curved elements for the two-dimensional high order discontinuous control-volume/finite-element method [J].
Stipcich, G. ;
Piller, M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (01) :22-43
[48]   ON HIGH ORDER FINITE ELEMENT SPACES OF DIFFERENTIAL FORMS [J].
Christiansen, Snorre H. ;
Rapetti, Francesca .
MATHEMATICS OF COMPUTATION, 2016, 85 (298) :517-548
[49]   High-Order Convergence With a Low-Order Discretization of the 2-D MFIE [J].
Davis, Clayton P. ;
Warnick, Karl F. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2004, 3 :355-358
[50]   Two and three dimensional H2 2-conforming finite element approximations without C 1-elements [J].
Ainsworth, Mark ;
Parker, Charles .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 431