Convergence of high order curl-conforming finite elements

被引:17
作者
Geuzaine, C [1 ]
Meys, B [1 ]
Dular, P [1 ]
Legros, W [1 ]
机构
[1] Univ Liege, Inst Montefiore, Dept Elect Engn, B-4000 Liege, Belgium
关键词
finite element methods; interpolation; convergence of numerical methods; error analysis; modeling;
D O I
10.1109/20.767237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to present an experimental convergence study of several high order curl-conforming finite elements. Degree of freedom are first mathematically defined in order to interpolate directly a set of analytical functions. The convergence is then analyzed on these functions before being compared with two- and three-dimensional finite element computations.
引用
收藏
页码:1442 / 1445
页数:4
相关论文
共 50 条
[31]   Matrix-free preconditioning for high-order H(curl) discretizations [J].
Barker, Andrew T. ;
Kolev, Tzanio .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (02)
[32]   Interpolation-operator orthogonal, hierarchical H1-conforming basis functions for tetrahedral finite elements [J].
Toth, Laszlo Levente ;
Schuck, Lukas David ;
Dyczij-Edlinger, Romanus .
2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, :421-425
[33]   An evaluation of mixed-order versus full-order vector finite elements [J].
Davidson, DB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (09) :2430-2441
[34]   High-order quasi-conforming triangular Reissner-Mindlin plate element [J].
Wang, Changsheng ;
Sun, Xiaoxiao ;
Zhang, Xiangkui ;
Hu, Ping .
ENGINEERING COMPUTATIONS, 2018, 35 (08) :2722-2752
[35]   Superconvergence analysis of a low order expanded conforming mixed finite element method for the extended Fisher-Kolmogorov equation [J].
Zhang, Houchao .
APPLICABLE ANALYSIS, 2025, 104 (07) :1306-1327
[36]   On the initial higher-order pressure convergence in equal-order finite element discretizations of the Stokes system [J].
Pacheco, Douglas R. Q. ;
Steinbach, Olaf .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 109 :140-145
[37]   An Exact Robust High-Order Differentiator With Hyperexponential Convergence [J].
Wang, Jian ;
Zimenko, Konstantin ;
Polyakov, Andrey ;
Efimov, Denis .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) :627-634
[38]   Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems [J].
Yingying Xie ;
Liuqiang Zhong .
Journal of Scientific Computing, 2021, 86
[39]   Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems [J].
Xie, Yingying ;
Zhong, Liuqiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (01)
[40]   Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements [J].
Webb, JP .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (08) :1244-1253