Convergence of high order curl-conforming finite elements

被引:17
作者
Geuzaine, C [1 ]
Meys, B [1 ]
Dular, P [1 ]
Legros, W [1 ]
机构
[1] Univ Liege, Inst Montefiore, Dept Elect Engn, B-4000 Liege, Belgium
关键词
finite element methods; interpolation; convergence of numerical methods; error analysis; modeling;
D O I
10.1109/20.767237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to present an experimental convergence study of several high order curl-conforming finite elements. Degree of freedom are first mathematically defined in order to interpolate directly a set of analytical functions. The convergence is then analyzed on these functions before being compared with two- and three-dimensional finite element computations.
引用
收藏
页码:1442 / 1445
页数:4
相关论文
共 50 条
[21]   On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows [J].
Garcia-Archilla, Bosco ;
John, Volker ;
Novo, Julia .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 385
[22]   Convergence estimates of finite elements for aclass of quasilinear elliptic problems [J].
Nakov, S. ;
Toulopoulos, I .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 104 :87-112
[23]   Convergence estimates of finite elements for a class of quasilinear elliptic problems [J].
Nakov, S. ;
Toulopoulos, I. .
Toulopoulos, I. (ioantlp@yahoo.gr), 1600, Elsevier Ltd (104) :87-112
[24]   Antenna Modeling Using an Iterative Absorbing Boundary Condition and High-Order Finite Elements [J].
Paul, P. ;
Webb, J. P. .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) :1048-1051
[25]   A second order numerical scheme for nonlinear Maxwell's equations using conforming finite element [J].
Yao, Changhui ;
Jia, Shanghui .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 371
[26]   Mixed finite elements of higher-order in elastoplasticity [J].
Bammer, Patrick ;
Banz, Lothar ;
Schroeder, Andreas .
APPLIED NUMERICAL MATHEMATICS, 2025, 209 :38-54
[27]   Convergence Analysis of Hybrid High-Order Methods for the Wave Equation [J].
Burman, Erik ;
Duran, Omar ;
Ern, Alexandre ;
Steins, Morgane .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
[28]   The implications of second-order functional derivative convergence for adaptive finite-element electromagnetics [J].
McFee, S ;
Giannacopoulos, D .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :457-460
[29]   Convergence of Lagrange finite elements for the Maxwell eigenvalue problem in two dimensions [J].
Boffi, Daniele ;
Guzman, Johnny ;
Neilan, Michael .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) :663-691
[30]   On the natural stabilization of convection dominated problems using high order Bubnov-Galerkin finite elements [J].
Cai, Q. ;
Kollmannsberger, S. ;
Sala-Lardies, E. ;
Huerta, A. ;
Rank, E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) :2545-2558