First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

被引:267
作者
Mei, Jun [1 ,3 ,4 ]
Wu, Ying [2 ,3 ,4 ]
Chan, C. T. [3 ,4 ]
Zhang, Zhao-Qing [3 ,4 ]
机构
[1] S China Univ Technol, Dept Phys, Guangzhou 510641, Guangdong, Peoples R China
[2] KAUST, Div Math & Comp Sci & Engn, Thuwal 239556900, Saudi Arabia
[3] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
POINT; ZITTERBEWEGUNG; TRANSMISSION;
D O I
10.1103/PhysRevB.86.035141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By using the (k) over right arrow (p) over right arrowp method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -pi. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene [J].
Bittner, S. ;
Dietz, B. ;
Miski-Oglu, M. ;
Iriarte, P. Oria ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW B, 2010, 82 (01)
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   Transmission gap, Bragg-like reflection, and Goos-Haumlnchen shifts near the Dirac point inside a negative-zero-positive index metamaterial slab [J].
Chen, Xi ;
Wang, Li-Gang ;
Li, Chun-Fang .
PHYSICAL REVIEW A, 2009, 80 (04)
[4]   Effective theory of quadratic degeneracies [J].
Chong, Y. D. ;
Wen, Xiao-Gang ;
Soljacic, Marin .
PHYSICAL REVIEW B, 2008, 77 (23)
[5]   Transmission in the vicinity of the Dirac point in hexagonal photonic crystals [J].
Diem, Marcus ;
Koschny, Thomas ;
Soukoulis, C. M. .
PHYSICA B-CONDENSED MATTER, 2010, 405 (14) :2990-2995
[6]   Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices [J].
Dreisow, Felix ;
Heinrich, Matthias ;
Keil, Robert ;
Tuennermann, Andreas ;
Nolte, Stefan ;
Longhi, Stefano ;
Szameit, Alexander .
PHYSICAL REVIEW LETTERS, 2010, 105 (14)
[7]  
Dresselhaus M.S., 2008, Group theory: Application to the physics of condensed matter
[8]   Theory of the effective Hamiltonian for degenerate bands in an electric field [J].
Foreman, BA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (34) :R435-R461
[9]   Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry [J].
Haldane, F. D. M. ;
Raghu, S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (01)
[10]   Dirac Spectra and Edge States in Honeycomb Plasmonic Lattices [J].
Han, Dezhuan ;
Lai, Yun ;
Zi, Jian ;
Zhang, Zhao-Qing ;
Chan, C. T. .
PHYSICAL REVIEW LETTERS, 2009, 102 (12)