On the Optimization of SVM Kernel Parameters for Improving Audio Classification Accuracy

被引:0
作者
Grama, Lacrimioara [1 ]
Tuns, Liana [1 ]
Rusu, Corneliu [1 ]
机构
[1] Tech Univ Cluj Napoca, Fac Elect Telecommun & Informat Technol, Basis Elect Dept, Signal Proc Grp, Cluj Napoca, Romania
来源
2017 14TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES) | 2017年
关键词
SVM; kernel optimization; audio classification; multiclass classification; MFCC;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a grid search approach to optimize the kernel's parameters for the support vector machines classifier. The most encountered three kernels are considered: linear, radial basis, and sigmoid. We show that the optimization of parameters improves the recognition performance for audio signals classification, especially in the case of sigmoid kernel. The behavior of the model is very sensitive to kernel's parameters, which, in turn are sensitive to data and selected features. We consider the problem of multiclass classification with imbalanced datasets. We compare the accuracies obtain with and without kernel parameter's optimization. As features we use Mel frequency cepstral coefficients.
引用
收藏
页码:224 / 227
页数:4
相关论文
共 12 条
  • [1] A tutorial on text-independent speaker verification
    Bimbot, F
    Bonastre, JF
    Fredouille, C
    Gravier, G
    Magrin-Chagnolleau, I
    Meignier, S
    Merlin, T
    Ortega-García, J
    Petrovska-Delacrétaz, D
    Reynolds, DA
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (04) : 430 - 451
  • [2] Boughorbel S, 2005, LECT NOTES COMPUT SC, V3697, P589
  • [3] LIBSVM: A Library for Support Vector Machines
    Chang, Chih-Chung
    Lin, Chih-Jen
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [4] Choosing multiple parameters for support vector machines
    Chapelle, O
    Vapnik, V
    Bousquet, O
    Mukherjee, S
    [J]. MACHINE LEARNING, 2002, 46 (1-3) : 131 - 159
  • [5] Efficient optimization of support vector machine learning parameters for unbalanced datasets
    Eitrich, Tatjana
    Lang, Bruno
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) : 425 - 436
  • [6] On the parameter optimization of Support Vector Machines for binary classification
    Gaspar, Paulo
    Carbonell, Jaime
    Luis Oliveira, Jose
    [J]. JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2012, 9 (03)
  • [7] Acoustic Classification using Linear Predictive Coding for Wildlife Detection Systems
    Grama, Lacrimioara
    Buhus, Elena Roxana
    Rusu, Corneliu
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2017,
  • [8] Lin, 2016, PRACTICAL GUIDE SUPP, P1, DOI DOI 10.1109/APSIPA.2016.7820786
  • [9] Seddik H, 2004, ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, P631
  • [10] Shawe-Taylor J., 2004, KERNEL METHODS PATTE