Gesture and Action Discovery for Evaluating Virtual Environments with Semi-Supervised Segmentation of Telemetry Records

被引:14
作者
Batch, Andrea [1 ]
Lee, Kyungjun [2 ]
Maddali, Hanuma Teja [2 ]
Elmqvist, Niklas [1 ]
机构
[1] Univ Maryland, Coll Informat Studies, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR) | 2018年
关键词
D O I
10.1109/AIVR.2018.00009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel pipeline for semisupervised behavioral coding of videos of users testing a device or interface, with an eye toward human-computer interaction evaluation for virtual reality. Our system applies existing statistical techniques for time-series classification, including e-divisive change point detection and "Symbolic Aggregate approXimation" (SAX) with agglomerative hierarchical clustering, to 3D pose telemetry data. These techniques create classes of short segments of single-person video data-short actions of potential interest called "micro-gestures." A long short-term memory (LSTM) layer then learns these micro-gestures from pose features generated purely from video via a pre-trained OpenPose convolutional neural network (CNN) to predict their occurrence in unlabeled test videos. We present and discuss the results from testing our system on the single user pose videos of the CMU Panoptic Dataset.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 32 条
  • [21] Budget-Aware Deep Semantic Video Segmentation
    Mahasseni, Behrooz
    Todorovic, Sinisa
    Fern, Alan
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2077 - 2086
  • [22] A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data
    Matteson, David S.
    James, Nicholas A.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 334 - 345
  • [23] Mullner D., 2013, J STAT SOFTWARE, V53
  • [24] Computational Grounded Theory: A Methodological Framework
    Nelson, Laura K.
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2020, 49 (01) : 3 - 42
  • [25] Reis H., 2014, HDB RES METHODS SOCI, V2nd, DOI DOI 10.1017/CBO9780511996481
  • [26] Thin-Slicing Network: A Deep Structured Model for Pose Estimation in Videos
    Song, Jie
    Wang, Limin
    Van Gool, Luc
    Hilliges, Otmar
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5563 - 5572
  • [27] Vatavu RD, 2011, LECT NOTES COMPUT SC, V6947, P89, DOI 10.1007/978-3-642-23771-3_9
  • [28] The Pose Knows: Video Forecasting by Generating Pose Futures
    Walker, Jacob
    Marino, Kenneth
    Gupta, Abhinav
    Hebert, Martial
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3352 - 3361
  • [29] Convolutional Pose Machines
    Wei, Shih-En
    Ramakrishna, Varun
    Kanade, Takeo
    Sheikh, Yaser
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4724 - 4732
  • [30] Weingart L.R., 2004, International Negotiation, V9, P441, DOI DOI 10.1163/1571806053498805