Giant Temperature Coefficient of Resistance in Carbon Nanotube/Phase-Change Polymer Nanocomposites

被引:37
作者
Fernandes, Gustavo E. [1 ]
Kim, Jin Ho [1 ]
Sood, Ashok K. [2 ]
Xu, Jimmy [1 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] Magnolia Opt Technol Inc, Woburn, MA 01801 USA
关键词
carbon nanotubes; composite materials; infrared; bolometers; sensors; POLY(N-ISOPROPYLACRYLAMIDE); COMPOSITE; FILMS; CONDUCTIVITY; TRANSPARENT; RESISTIVITY; KINETICS;
D O I
10.1002/adfm.201300208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The temperature coefficient of resistance of a carbon nanotube nanocomposite with the non-conductive phase-change hydrogel Poly(N-isopropylacrylamide) is studied. This nanocomposite is found to achieve the largest reported temperature coefficient of resistance, approximate to-10%/degrees C, observed in carbon nanotube-polymer nanocomposites to date. The giant temperature coefficients of resistance results from a volume-phase-transition that is induced by the humidity present in the surrounding atmosphere and that enhances the temperature dependence of the resistivity via direct changes in the tunneling resistance that electrons experience in moving between nearby carbon nanotubes. The bolometric photoresponses of this new material are also studied. The nanocomposite's enhanced responses to temperature and humidity give it great potential for sensor applications and uncooled infrared detection.
引用
收藏
页码:4678 / 4683
页数:6
相关论文
共 34 条
  • [1] Bolometric detector on the basis of single-wall carbon nanotube/polymer composite
    Aliev, Ali E.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2008, 51 (06) : 541 - 545
  • [2] Electrical resistivity of copper-silica nanocomposites synthesized by electrodeposition
    Banerjee, S
    Chakravorty, D
    [J]. JOURNAL OF APPLIED PHYSICS, 1998, 84 (02) : 1149 - 1151
  • [3] Extreme oxygen sensitivity of electronic properties of carbon nanotubes
    Collins, PG
    Bradley, K
    Ishigami, M
    Zettl, A
    [J]. SCIENCE, 2000, 287 (5459) : 1801 - 1804
  • [4] Carbon nanotubes: Synthesis, integration, and properties
    Dai, HJ
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) : 1035 - 1044
  • [5] Dresselhaus M.S., 2001, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications
  • [6] COULOMB GAP AND LOW-TEMPERATURE CONDUCTIVITY OF DISORDERED SYSTEMS
    EFROS, AL
    SHKLOVSKII, BI
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (04): : L49 - L51
  • [7] Achieving High Mid-IR Bolometric Responsivity for Anisotropic Composite Materials from Carbon Nanotubes and Polymers
    Glamazda, Alexander Y.
    Karachevtsev, Victor. A.
    Euler, William B.
    Levitsky, Igor A.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) : 2177 - 2186
  • [8] Sign change of Poisson's ratio for carbon nanotube sheets
    Hall, Lee J.
    Coluci, Vitor R.
    Galvao, Douglas S.
    Kozlov, Mikhail E.
    Zhang, Mei
    Dantas, Socrates O.
    Baughman, Ray H.
    [J]. SCIENCE, 2008, 320 (5875) : 504 - 507
  • [9] Heskins M., 1968, J Macromol Sci Chem A, V2, P1441, DOI [DOI 10.1080/10601326808051910, 10.1080/10601326808051910]
  • [10] Bolometric infrared photoresponse of suspended single-walled carbon nanotube films
    Itkis, ME
    Borondics, F
    Yu, AP
    Haddon, RC
    [J]. SCIENCE, 2006, 312 (5772) : 413 - 416