Spectral edge regularity of magnetic Hamiltonians

被引:8
|
作者
Cornean, Horia D. [1 ]
Purice, Radu [2 ,3 ]
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
[2] Romanian Acad, Inst Math Simion Stoilow, RO-14700 Bucharest, Romania
[3] CNRS Franco Roumain Math Mode, Lab European Associe, Bucharest, Romania
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2015年 / 92卷
关键词
LIPSCHITZ CONTINUITY; SCHRODINGER; OPERATORS; STABILITY; PARTICLE; GAPS;
D O I
10.1112/jlms/jdv019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse the spectral edge regularity of a large class of magnetic Hamiltonians when the perturbation is generated by a globally bounded magnetic field. We can prove Lipschitz regularity of spectral edges if the magnetic field perturbation is either constant or slowly variable. We also recover an older result by G. Nenciu who proved Lipschitz regularity up to a logarithmic factor for general globally bounded magnetic field perturbations.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [31] Global regularity for the 2D magnetic Benard fluid system with mixed partial viscosity
    Ma, Liangliang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (09) : 2148 - 2166
  • [32] Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
    Blackwell, Raymond E.
    Zhao, Fangzhou
    Brooks, Erin
    Zhu, Junmian
    Piskun, Ilya
    Wang, Shenkai
    Delgado, Aidan
    Lee, Yea-Lee
    Louie, Steven G.
    Fischer, Felix R.
    NATURE, 2021, 600 (7890) : 647 - +
  • [33] Gyrofluid computation of magnetic perturbation effects on turbulence and edge localized bursts
    Peer, J.
    Kendl, A.
    Ribeiro, T. T.
    Scott, B. D.
    NUCLEAR FUSION, 2017, 57 (08)
  • [34] Global regularity of 2D magnetic Benard fluid equations with zero kinematic viscosity, almost Laplacian magnetic diffusion and thermal diffusivity
    Ma, Liangliang
    APPLICABLE ANALYSIS, 2022, 101 (08) : 3082 - 3102
  • [35] Sufficient spectral conditions for graphs being k-edge-Hamiltonian or k-Hamiltonian
    Li, Yongtao
    Peng, Yuejian
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (13): : 2093 - 2113
  • [36] L2-Well-posedness and Regularity of 1-d Wave Equations on a Three-edge-tree-shaped Network
    Liu, Dongyi
    Qi, Qi
    Xu, Genqi
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 867 - 872
  • [37] Uniform regularity and vanishing dissipation limit for the 3D magnetic Bénard equations in half space
    Wang, Jing
    Zhang, Xueyi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 414 : 274 - 309
  • [38] Magnetic Dirac systems: Violation of bulk-edge correspondence in the zigzag limit
    Barbaroux, J. -m.
    Cornean, H. D.
    Le Treust, L.
    Raymond, N.
    Stockmeyer, E.
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (04)
  • [39] Towards understanding edge localised mode mitigation by resonant magnetic perturbations in MAST
    Chapman, I. T.
    Kirk, A.
    Ham, C. J.
    Harrison, J. R.
    Liu, Y. Q.
    Saarelma, S.
    Scannell, R.
    Thornton, A. J.
    Becoulet, M.
    Orain, F.
    Cooper, W. A.
    Pamela, S.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [40] Blow-Up Criteria and Regularity Criterion for the Three-Dimensional Magnetic Benard System in the Multiplier Space
    Ma, Liangliang
    RESULTS IN MATHEMATICS, 2018, 73 (03)