A silicon metal-oxide-semiconductor electron spin-orbit qubit

被引:86
|
作者
Jock, Ryan M. [1 ]
Jacobson, N. Tobias [2 ]
Harvey-Collard, Patrick [1 ,3 ,4 ]
Mounce, Andrew M. [1 ]
Srinivasa, Vanita [2 ]
Ward, Dan R. [1 ]
Anderson, John [1 ]
Manginell, Ron [1 ]
Wendt, Joel R. [1 ]
Rudolph, Martin [1 ]
Pluym, Tammy [1 ]
Gamble, John King [2 ]
Baczewski, Andrew D. [2 ]
Witzel, Wayne M. [2 ]
Carroll, Malcolm S. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87185 USA
[3] Univ Sherbrooke, Dept Phys, 2500 Boul Univ, Sherbrooke, PQ J1K 2R1, Canada
[4] Univ Sherbrooke, Inst Quant, 2500 Boul Univ, Sherbrooke, PQ J1K 2R1, Canada
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
QUANTUM; GATE;
D O I
10.1038/s41467-018-04200-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic field-orientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T-2m*, of 1.6 mu s is consistent with 99.95% Si-28 enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 mu eV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-axis qubit control, while not increasing noise relative to other material choices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Impact of interfacial scattering on the spin polarization of a metal/semiconductor/metal with Rashba spin-orbit coupling junction
    Ka-oey, A.
    Jantayod, A.
    Pairor, P.
    PHYSICA B-CONDENSED MATTER, 2015, 458 : 103 - 106
  • [42] Electrical and structural characterization of metal-oxide-semiconductor capacitors with silicon rich oxide
    Crupi, I
    Lombardo, S
    Spinella, C
    Bongiorno, C
    Liao, Y
    Gerardi, C
    Fazio, B
    Vulpio, M
    Privitera, S
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (10) : 5552 - 5558
  • [43] Radiation Effect of Metal-Oxide-Semiconductor Structure Irradiated by Electron
    Zhang, Jian Xin
    Liu, Jun Xing
    Wan, You Bao
    ADVANCED MATERIALS AND ENGINEERING APPLICATIONS, 2012, 161 : 140 - 143
  • [44] ELECTRON TRAPPING IN OXYNITRIDE LAYERS IN METAL-OXIDE-SEMICONDUCTOR STRUCTURES
    RAHAT, I
    SHAPPIR, J
    JOURNAL OF APPLIED PHYSICS, 1994, 76 (04) : 2279 - 2283
  • [45] Effects of Hf contamination on the properties of silicon oxide metal-oxide-semiconductor devices
    Kang, CS
    Onishi, K
    Kang, L
    Lee, JC
    APPLIED PHYSICS LETTERS, 2002, 81 (26) : 5018 - 5020
  • [46] A metal-oxide-semiconductor varactor
    Svelto, F
    Erratico, P
    Manzini, S
    Castello, R
    IEEE ELECTRON DEVICE LETTERS, 1999, 20 (04) : 164 - 166
  • [47] METAL-OXIDE-SEMICONDUCTOR TRANSISTOR
    HILBOURN.RA
    MILES, JF
    ELECTRONIC ENGINEERING, 1965, 37 (445): : 156 - &
  • [48] METAL-OXIDE-SEMICONDUCTOR TUNNELLING
    CLARKE, R
    SHEWCHUN, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (06): : 790 - &
  • [49] METAL-OXIDE-SEMICONDUCTOR TECHNOLOGY
    HITTINGER, WC
    SCIENTIFIC AMERICAN, 1973, 229 (02) : 48 - 57
  • [50] ELECTRON TRANSPORT THROUGH A MESOSCOPIC DEVICE WITH THE SPIN-ORBIT COUPLING SEMICONDUCTOR LEADS
    Cheng, Shu-Guang
    Zhao, Xiao-Juan
    Zhao, Pei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (12): : 1671 - 1680