Note on generalized hypergeometric function

被引:6
|
作者
Rao, Snehal B. [1 ]
Shukla, A. K. [2 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Dept Appl Math, Vadodara 390001, India
[2] SV Natl Inst Technol, Dept Appl Math & Humanities, Surat 395007, India
关键词
generalized hypergeometric function; integral representation; fractional integral and differential operators; 33C20; 33E20; 26A33;
D O I
10.1080/10652469.2013.773327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Virchenko and Rumiantseva [On the generalized associated legendre functions. Fract Cal Appl Anal. 2008; 11(2): 175- 185] gave another generalization F-2(1)tau,beta(a, b; c; z) of the hypergeometric function. In this paper, we give integral representations and differentiation formulae of F-2(1)tau,beta (a, b; c; z), alongwith relation of F-2(1)tau,beta (a, b; c; z) with the generalized Mittag-Leffler function E-alpha,beta(gamma,q)(z) [Shukla AK, Prajapati JC. On a generalization of Mittag-Leffler function and its properties. J Math Anal Appl. 2007; 336(2): 797-811.]. Further properties of the generalized hypergeometric function R-2(1)(a, b; c; t; z) [Virchenko N, Kalla SL, Al-Zamel A. Some results on a generalized hypergeometric function. Integral Transforms Spec Funct. 2001; 12(1): 89-100.], namely integral representation and differentiation formulae are also studied.
引用
收藏
页码:896 / 904
页数:9
相关论文
共 50 条
  • [1] A note on a sum associated with the generalized hypergeometric function
    Neher, Markus
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1527 - 1534
  • [2] SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC FUNCTION
    Rao, Snehal B.
    Patel, Amit D.
    Prajapati, Jyotindra C.
    Shukla, Ajay K.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (02): : 303 - 317
  • [3] Extension of Pochhammer symbol, generalized hypergeometric function and τ-Gauss hypergeometric function
    Yadav, Komal Singh
    Sharan, Bhagwat
    Verma, Ashish
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, : 61 - 72
  • [4] A NOTE ON THE ASYMPTOTIC EXPANSION OF GENERALIZED HYPERGEOMETRIC FUNCTIONS
    Volkmer, Hans
    Wood, John J.
    ANALYSIS AND APPLICATIONS, 2014, 12 (01) : 107 - 115
  • [5] Parameter derivatives of the generalized hypergeometric function
    Fejzullahu, Bujar Xh.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (11) : 781 - 788
  • [6] A Note on Some Reduction Formulas for the Generalized Hypergeometric Function 2F2 and Kampe de Feriet Function
    Santander, J. L. G.
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 949 - 954
  • [7] Inequalities and monotonicity of ratios for generalized hypergeometric function
    Karp, D.
    Sitnik, S. M.
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 337 - 352
  • [8] Log-concavity and Turan-type inequalities for the generalized hypergeometric function
    Kalmykov, S. I.
    Karp, D. B.
    ANALYSIS MATHEMATICA, 2017, 43 (04) : 567 - 580
  • [9] Some new integral transforms with the generalized hypergeometric function
    Virchenko, N. O.
    Ovcharenko, O. V.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (09) : 647 - 653
  • [10] Some properties of Wright-type generalized hypergeometric function via fractional calculus
    Snehal B Rao
    Jyotindra C Prajapati
    Amitkumar D Patel
    Ajay K Shukla
    Advances in Difference Equations, 2014