Alternative pathways to the 1.5°C target reduce the need for negative emission technologies

被引:491
作者
van Vuuren, Detlef P. [1 ,2 ]
Stehfest, Elke [1 ]
Gernaat, David E. H. J. [1 ,2 ]
van den Berg, Maarten [1 ]
Bijl, David L. [2 ]
de Boer, Harmen Sytze [1 ,2 ]
Daioglou, Vassilis [1 ,2 ]
Doelman, Jonathan C. [1 ]
Edelenbosch, Oreane Y. [1 ,2 ]
Harmsen, Mathijs [1 ,2 ]
Hof, Andries F. [1 ,2 ]
van Sluisveld, Mariesse A. E. [1 ,2 ]
机构
[1] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands
[2] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
关键词
CULTURED MEAT; CO2; EMISSIONS; TEMPORAL DYNAMICS; CARBON; SCENARIOS; MODEL; CHALLENGES; CONSISTENT;
D O I
10.1038/s41558-018-0119-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mitigation scenarios that achieve the ambitious targets included in the Paris Agreement typically rely on greenhouse gas emission reductions combined with net carbon dioxide removal (CDR) from the atmosphere, mostly accomplished through large-scale application of bioenergy with carbon capture and storage, and afforestation. However, CDR strategies face several difficulties such as reliance on underground CO2 storage and competition for land with food production and biodiversity protection. The question arises whether alternative deep mitigation pathways exist. Here, using an integrated assessment model, we explore the impact of alternative pathways that include lifestyle change, additional reduction of non-CO2 greenhouse gases and more rapid electrification of energy demand based on renewable energy. Although these alternatives also face specific difficulties, they are found to significantly reduce the need for CDR, but not fully eliminate it. The alternatives offer a means to diversify transition pathways to meet the Paris Agreement targets, while simultaneously benefiting other sustainability goals.
引用
收藏
页码:391 / +
页数:10
相关论文
共 66 条
[1]   The trouble with negative emissions [J].
Anderson, Kevin ;
Peters, Glen .
SCIENCE, 2016, 354 (6309) :182-183
[2]  
[Anonymous], GLOBAL ENERGY ASSESS
[3]  
[Anonymous], 14057 LEI WAG UR
[4]  
[Anonymous], 2009, CEM SUST IN CEM IND
[5]   A physically-based model of long-term food demand [J].
Bijl, David L. ;
Bogaart, Patrick W. ;
Dekker, Stefan C. ;
Stehfest, Elke ;
de Vries, Bert J. M. ;
van Vuuren, Detlef P. .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2017, 45 :47-62
[6]   Modelling the role of agriculture for the 20th century global terrestrial carbon balance [J].
Bondeau, Alberte ;
Smith, Pascalle C. ;
Zaehle, Soenke ;
Schaphoff, Sibyll ;
Lucht, Wolfgang ;
Cramer, Wolfgang ;
Gerten, Dieter ;
Lotze-Campen, Hermann ;
Mueller, Christoph ;
Reichstein, Markus ;
Smith, Benjamin .
GLOBAL CHANGE BIOLOGY, 2007, 13 (03) :679-706
[7]   Exploring changes in world ruminant production systems [J].
Bouwman, AF ;
Van der Hoek, KW ;
Eickhout, B ;
Soenario, I .
AGRICULTURAL SYSTEMS, 2005, 84 (02) :121-153
[8]  
Bylin C., 2010, SPE INT C HLTH SAF E
[9]  
Clarke L, 2014, CLIMATE CHANGE 2014: MITIGATION OF CLIMATE CHANGE, P413
[10]   Carbon Dioxide Capture and Storage: Issues and Prospects [J].
de Coninck, Heleen ;
Benson, Sally M. .
ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 39, 2014, 39 :243-270