Hyperspectral Image Super-Resolution Based on Spatial Group Sparsity Regularization Unmixing

被引:5
|
作者
Li, Jun [1 ]
Peng, Yuanxi [1 ]
Jiang, Tian [2 ]
Zhang, Longlong [1 ]
Long, Jian [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 16期
基金
中国国家自然科学基金;
关键词
hyperspectral imaging; super-resolution; image fusion; hyperspectral unmixing; group sparsity; MULTISPECTRAL IMAGES; FUSION;
D O I
10.3390/app10165583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A hyperspectral image (HSI) contains many narrow spectral channels, thus containing efficient information in the spectral domain. However, high spectral resolution usually leads to lower spatial resolution as a result of the limitations of sensors. Hyperspectral super-resolution aims to fuse a low spatial resolution HSI with a conventional high spatial resolution image, producing an HSI with high resolution in both the spectral and spatial dimensions. In this paper, we propose a spatial group sparsity regularization unmixing-based method for hyperspectral super-resolution. The hyperspectral image (HSI) is pre-clustered using an improved Simple Linear Iterative Clustering (SLIC) superpixel algorithm to make full use of the spatial information. A robust sparse hyperspectral unmixing method is then used to unmix the input images. Then, the endmembers extracted from the HSI and the abundances extracted from the conventional image are fused. This ensures that the method makes full use of the spatial structure and the spectra of the images. The proposed method is compared with several related methods on public HSI data sets. The results demonstrate that the proposed method has superior performance when compared to the existing state-of-the-art.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Hyperspectral Image Super-Resolution via Adaptive Factor Group Sparsity Regularization-Based Subspace Representation
    Peng, Yidong
    Li, Weisheng
    Luo, Xiaobo
    Du, Jiao
    REMOTE SENSING, 2023, 15 (19)
  • [2] Hyperspectral Image Super-Resolution via Sparsity Regularization-Based Spatial-Spectral Tensor Subspace Representation
    Peng, Yidong
    Li, Weisheng
    Luo, Xiaobo
    Du, Jiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11707 - 11722
  • [3] Hyperspectral Image Super-Resolution by Spectral Mixture Analysis and Spatial-Spectral Group Sparsity
    Li, Jie
    Yuan, Qiangqiang
    Shen, Huanfeng
    Meng, Xiangchao
    Zhang, Liangpei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) : 1250 - 1254
  • [4] Hyperspectral Image Super-Resolution Based on Tensor Spatial-Spectral Joint Correlation Regularization
    Xing, Yinghui
    Yang, Shuyuan
    Jiao, Licheng
    IEEE ACCESS, 2020, 8 : 63654 - 63665
  • [5] Hyperspectral Image Super-Resolution Based on Spatial Correlation-Regularized Unmixing Convolutional Neural Network
    Lu, Xiaochen
    Yang, Dezheng
    Zhang, Junping
    Jia, Fengde
    REMOTE SENSING, 2021, 13 (20)
  • [6] Image and video spatial super-resolution via bandlet-based sparsity regularization and structure tensor
    Mosleh, Ali
    Bouguila, Nizar
    Ben Hamza, A.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 30 : 137 - 146
  • [7] COUPLED HYPERSPECTRAL SUPER-RESOLUTION AND UNMIXING
    Zhao, Yongqiang
    Yi, Chen
    Yang, Jingxiang
    Chan, Jonathan Cheung-Wai
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 2641 - 2644
  • [8] Sparsity Regularization Based Spatial-Spectral Super-Resolution of Multispectral Imagery
    Mullah, Helal Uddin
    Deka, Bhabesh
    Barman, Trishna
    Prasad, A. V. V.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 523 - 531
  • [9] Hyperspectral image super-resolution combining with deep learning and spectral unmixing
    Zou, Changzhong
    Huang, Xusheng
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 84
  • [10] Hyperspectral Super-Resolution with Spectral Unmixing Constraints
    Lanaras, Charis
    Baltsavias, Emmanuel
    Schindler, Konrad
    REMOTE SENSING, 2017, 9 (11):