Optimized synthesis of Zr(iv) metal organic frameworks (MOFs-808) for efficient hydrogen storage

被引:111
作者
Xu, Jiong [1 ]
Liu, Jin [1 ,2 ]
Li, Zhen [1 ,2 ]
Wang, Xianbiao [1 ]
Xu, Yongfei [1 ]
Chen, Saisai [1 ]
Wang, Zhuo [1 ]
机构
[1] Anhui Jianzhu Univ, Anhui Key Lab Adv Bldg Mat, Hefei 230601, Anhui, Peoples R China
[2] Anhui Jianzhu Univ, Sch Mat Sci & Chem Engn, Hefei 230601, Anhui, Peoples R China
关键词
GAS-STORAGE; CU-BTC; ADSORPTION; UIO-66; SITES; CH4;
D O I
10.1039/c8nj06362a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructured Zr(iv) metal organic frameworks (MOFs-808) with high stability are synthesized by using trimesic acid (BTC), a highly electron-deficient and polar molecule, as an organic ligand in order to produce efficient adsorbents for hydrogen gas. The MOFs-808 are characterized by XRD, FT-IR, SEM, TEM, specific surface area measurements and thermogravimetric analysis, and the conditions (e.g., the reactant molar ratio, the amount of solvent, the reaction temperature and the reaction time) for synthesis of MOFs-808 are optimized. The MOF-808 obtained under optimized preparation conditions has higher crystallinity, a larger specific surface area, and relatively high stability both in acidic solution and at temperatures up to 300 degrees C. The hydrogen storage capacity of the optimized MOF-808 under 4 MPa reaches 7.31 wt% at 77 K, which is close to the ultimate target defined for hydrogen storage. Our results indicate that the presence of the electron-deficient ligand on MOFs-808 favors the adsorption of hydrogen gas.
引用
收藏
页码:4092 / 4099
页数:8
相关论文
共 40 条
[1]   Hydrogen Storage in Liquid Organic Hydride: Producing Hydrogen Catalytically from Methylcyclohexane [J].
Alhumaidan, Faisal ;
Cresswell, David ;
Garforth, Arthur .
ENERGY & FUELS, 2011, 25 (10) :4217-4234
[2]   Atomic-scale modeling of hydrogen storage in the UiO-66 and UiO-67 metal-organic frameworks [J].
Andersson, Stefan ;
Larsson, Per-Erik .
MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 224 :349-359
[3]   Hydrogen storage properties of the novel crosslinked UiO-66-(OH)2 [J].
Chen, Saisai ;
Liu, Jin ;
Xu, Yongfei ;
Li, Zhen ;
Wang, Tai ;
Xu, Jiong ;
Wang, Zhuo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) :15370-15377
[4]   Hydrogen storage properties of highly cross-linked polymers derived from chlorinated polypropylene and polyethylenimine [J].
Chen, Saisai ;
Liu, Jin ;
Li, Zhen ;
Wang, Huanting ;
Wang, Xianbiao ;
Xu, Yongfei .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (36) :23028-23034
[5]   Hydrogen and methane storage in ultrahigh surface area Metal-Organic Frameworks [J].
Ding, Lifeng ;
Yazaydin, A. Ozgur .
MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 182 :185-190
[6]   Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53 [J].
Férey, G ;
Latroche, M ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Percheron-Guégan, A .
CHEMICAL COMMUNICATIONS, 2003, (24) :2976-2977
[7]   An Ab Initio Force Field for Predicting Hydrogen Storage in IRMOF Materials [J].
Fu, Jia ;
Sun, Huai .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (52) :21815-21824
[8]   Water Adsorption in Porous Metal-Organic Frameworks and Related Materials [J].
Furukawa, Hiroyasu ;
Gandara, Felipe ;
Zhang, Yue-Biao ;
Jiang, Juncong ;
Queen, Wendy L. ;
Hudson, Matthew R. ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (11) :4369-4381
[9]   MOF-derived carbon coating on self-supported ZnCo2O4-ZnO nanorod arrays as high-performance anode for lithium-ion batteries [J].
Gan, Qingmeng ;
Zhao, Kuangmin ;
Liu, Suqin ;
He, Zhen .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (13) :7768-7780
[10]   Ti-Zr-Ni and Ti-Hf-Ni quasicrystals and approximants as hydrogen storage alloys [J].
Gibbons, PC ;
Hennig, RG ;
Huett, VT ;
Kelton, KF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 334 :461-465