Parameter-free classification in multi-class imbalanced data sets

被引:20
作者
Cerf, Loic [1 ]
Gay, Dominique [2 ]
Selmaoui-Folcher, Nazha [3 ]
Cremilleux, Bruno [4 ]
Boulicaut, Jean-Francois [5 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[2] Orange Labs, F-22307 Lannion, France
[3] Univ New Caledonia, PPME EA3325, Noumea, New Caledonia
[4] Univ Caen, GREYC CNRS UMR6072, F-14032 Caen, France
[5] Univ Lyon, CNRS, INRIA, INSA Lyon,LIRIS,UMR5205, F-69621 Villeurbanne, France
关键词
Classification; Association rules; Multi-class context; Imbalanced data set; One-Versus-Each framework; DISCOVERY; PATTERNS; SMOTE;
D O I
10.1016/j.datak.2013.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many applications deal with classification in multi-class imbalanced contexts. In such difficult situations, classical CBA-like approaches (Classification Based on Association rules) show their limits. Most CBA-like methods actually are One-Vs-All approaches (OVA), i.e., the selected classification rules are relevant for one class and irrelevant for the union of the other classes. In this paper, we point out recurrent problems encountered by OVA approaches applied to multi-class imbalanced data sets (e.g., improper bias towards majority classes, conflicting rules). That is why we propose a new One-Versus-Each (OVE) framework. In this framework, a rule has to be relevant for one class and irrelevant for every other class taken separately. Our approach, called fitcare, is empirically validated on various benchmark data sets and our theoretical findings are confirmed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 129
页数:21
相关论文
共 50 条
  • [21] Multi-class imbalanced image classification using conditioned GANs
    Kumar, M. R. Pavan
    Jayagopal, Prabhu
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2021, 10 (03) : 143 - 153
  • [22] An oversampling method for multi-class imbalanced data based on composite weights
    Deng, Mingyang
    Guo, Yingshi
    Wang, Chang
    Wu, Fuwei
    PLOS ONE, 2021, 16 (11):
  • [23] A parameter-free associative classification method
    Cerf, Loic
    Gay, Dominique
    Selmaoui, Nazha
    Boulicaut, Jean-Francois
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2008, 5182 : 293 - +
  • [24] Comparative Analysis using Various Performance Metrics in Imbalanced Data for Multi-class Text Classification
    Riyanto, Slamet
    Sitanggang, Imas Sukaesih
    Djatna, Taufik
    Atikah, Tika Dewi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1082 - 1090
  • [25] MKC-SMOTE: A Novel Synthetic Oversampling Method for Multi-Class Imbalanced Data Classification
    Wang, Jiao
    Awang, Norhashidah
    IEEE ACCESS, 2024, 12 : 196929 - 196938
  • [26] BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification
    Guo Haixiang
    Li Yijing
    Li Yanan
    Liu Xiao
    Li Jinling
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 49 : 176 - 193
  • [27] SCUT: Multi-Class Imbalanced Data Classification using SMOTE and Cluster-based Undersampling
    Agrawal, Astha
    Viktor, Herna L.
    Paquet, Eric
    2015 7TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (IC3K), 2015, : 226 - 233
  • [28] Global-local information based oversampling for multi-class imbalanced data
    Han, Mingming
    Guo, Husheng
    Li, Jinyan
    Wang, Wenjian
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (06) : 2071 - 2086
  • [29] Multi-class random forest model to classify wastewater treatment imbalanced data
    Distefano, Veronica
    Palma, Monica
    De Iaco, Sandra
    SOCIO-ECONOMIC PLANNING SCIENCES, 2024, 95
  • [30] Combined Cleaning and Resampling algorithm for multi-class imbalanced data with label noise
    Koziarski, Michal
    Wozniak, Michal
    Krawczyk, Bartosz
    KNOWLEDGE-BASED SYSTEMS, 2020, 204 (204)