On Rate of Convergence of Jungck-Type Iterative Schemes

被引:32
作者
Hussain, Nawab [2 ]
Kumar, Vivek [1 ,3 ]
Kutbi, Marwan A. [2 ]
机构
[1] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
关键词
FIXED-POINTS; MAPPINGS;
D O I
10.1155/2013/132626
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new iterative scheme called Jungck-CR iterative scheme and study the stability and strong convergence of this iterative scheme for a pair of nonself-mappings using a certain contractive condition. Also, convergence speed comparison and applications of Jungck-type iterative schemes will be shown through examples.
引用
收藏
页数:15
相关论文
共 28 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
[2]  
Barnsley M., 1993, FRACTALS EVERYWHERE
[3]  
Berinde V., 2004, FIXED POINT THEORY A, V2, P97
[4]  
Berinde V., 2004, Acta Math. Univ. Comenian, V73, P119
[5]  
Bosede AO, 2010, BULL MATH ANAL APPL, V2, P65
[6]  
Chugh R., 2013, INT J COMPUTER MATH, V2013
[7]  
Chugh R., 2011, INT J COMPUTER APPL, V36
[8]   Almost stability of the Mann type iteration method with error term involving strictly hemicontractive mappings in smooth Banach spaces [J].
Hussain, Nawab ;
Rafiq, Arif ;
Ciric, Ljubomir B. ;
Al-Mezel, Saleh .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[9]   Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces [J].
Hussain, Nawab ;
Rafiq, Arif ;
Ciric, Ljubomir B. .
FIXED POINT THEORY AND APPLICATIONS, 2012, :1-14
[10]   Suzuki-type fixed point results in metric type spaces [J].
Hussain, Nawab ;
Doric, Dragan ;
Kadelburg, Zoran ;
Radenovic, Stojan .
FIXED POINT THEORY AND APPLICATIONS, 2012,