On Rate of Convergence of Jungck-Type Iterative Schemes

被引:31
作者
Hussain, Nawab [2 ]
Kumar, Vivek [1 ,3 ]
Kutbi, Marwan A. [2 ]
机构
[1] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
关键词
FIXED-POINTS; MAPPINGS;
D O I
10.1155/2013/132626
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new iterative scheme called Jungck-CR iterative scheme and study the stability and strong convergence of this iterative scheme for a pair of nonself-mappings using a certain contractive condition. Also, convergence speed comparison and applications of Jungck-type iterative schemes will be shown through examples.
引用
收藏
页数:15
相关论文
共 28 条
  • [1] Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
  • [2] Barnsley M., 1993, FRACTALS EVERYWHERE
  • [3] Berinde V., 2004, FIXED POINT THEORY A, V2, P97
  • [4] Berinde V., 2004, Acta Math. Univ. Comenian, V73, P119
  • [5] Bosede AO, 2010, BULL MATH ANAL APPL, V2, P65
  • [6] Chugh R., 2013, INT J COMPUTER MATH, V2013
  • [7] Chugh R., 2011, INT J COMPUTER APPL, V36
  • [8] Almost stability of the Mann type iteration method with error term involving strictly hemicontractive mappings in smooth Banach spaces
    Hussain, Nawab
    Rafiq, Arif
    Ciric, Ljubomir B.
    Al-Mezel, Saleh
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [9] Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces
    Hussain, Nawab
    Rafiq, Arif
    Ciric, Ljubomir B.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012, : 1 - 14
  • [10] Suzuki-type fixed point results in metric type spaces
    Hussain, Nawab
    Doric, Dragan
    Kadelburg, Zoran
    Radenovic, Stojan
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012,