Changes in Stream Primary Producer Communities Resulting from Large-Scale Catastrophic Amphibian Declines: Can Small-Scale Experiments Predict Effects of Tadpole Loss?

被引:62
作者
Connelly, Scott [1 ]
Pringle, Catherine M. [1 ]
Bixby, Rebecca J. [2 ]
Brenes, Roberto [3 ]
Whiles, Matt R. [3 ]
Lips, Karen R. [3 ]
Kilham, Susan [4 ]
Huryn, Alexander D. [5 ]
机构
[1] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA
[2] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA
[3] So Illinois Univ, Dept Zool, Carbondale, IL 62901 USA
[4] Drexel Univ, Dept Biosci & Biotechnol, Philadelphia, PA 19104 USA
[5] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
tadpoles; amphibian declines; Panama; tropical streams; primary production; grazing; periphyton;
D O I
10.1007/s10021-008-9191-7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Global declines of amphibian populations are well documented, yet effects of these declines on freshwater ecosystem structure and function are poorly understood. Here we examine responses of algal primary producers to tadpole extirpation over differing spatial and temporal scales. We experimentally excluded tadpoles from artificial substrata within localized areas (0.25 m(2)) of two streams. One stream had an intact community of frogs (frog stream), and the other had recently experienced a catastrophic decline (frogless stream), leaving virtually no tadpoles. In the frog stream, there were significantly greater levels of chlorophyll a (+111%, P = 0.009), ash-free dry mass (AFDM) (+163%, P = 0.02), inorganic sediments (+114%, P = 0.001), and higher mean algal cell biovolume in tadpole exclusion treatments than in the tadpole access treatments. Correspondingly, overall AFDM-specific net primary production (NPP) increased by 38% (P = 0.001) and chlorophyll a-specific NPP increased by 29% (P = 0.001) in tadpole access treatments compared to tadpole exclusion treatments. Areal-specific NPP did not differ between treatments. There were no significant differences in chlorophyll a, AFDM, inorganic sediments, algal cell biovolume, or biomass-specific NPP between treatments in the frogless stream. Fifteen months after our experiments, a massive amphibian decline associated with a fungal pathogen occurred in the frog stream, resulting in the extirpation of over 90% of tadpoles. This extirpation was followed by significant increases in levels of chlorophyll a (269%, P = 0.001), AFDM (+220%, P < 0.001), and inorganic sediments (+140%, P = 0.001). Reach-scale NPP increased from -1587 to -810 mg DO m(-2) d(-1). Additionally, algal community composition shifted from a dominance of small adnate diatoms (predecline) to a dominance of large upright algal species (post-decline). Our experimental results, combined with algal monitoring at the reach scale, indicate that over the course of our study catastrophic amphibian losses have significant effects on stream ecosystem structure and function. Ecosystem-level impacts of tadpole extirpations were more dramatic than results from our small-scale, short-term experiments, which predicted the direction of change in response variables but underestimated the magnitude. However, the long-term stream ecosystem responses remain unknown.
引用
收藏
页码:1262 / 1276
页数:15
相关论文
共 67 条
[1]  
*APHA, 1985, STAND EX WAT WAST, V16
[2]  
BOURRELLY P, 1952, ALGUES DOUCE GUADELO
[3]   INTERACTIONS BETWEEN FRESH-WATER SNAILS AND TADPOLES - COMPETITION AND FACILITATION [J].
BRONMARK, C ;
RUNDLE, SD ;
ERLANDSSON, A .
OECOLOGIA, 1991, 87 (01) :8-18
[4]   RANDOMIZED INTERVENTION ANALYSIS AND THE INTERPRETATION OF WHOLE-ECOSYSTEM EXPERIMENTS [J].
CARPENTER, SR ;
FROST, TM ;
HEISEY, D ;
KRATZ, TK .
ECOLOGY, 1989, 70 (04) :1142-1152
[5]   Ecosystem consequences of changing biodiversity - Experimental evidence and a research agenda for the future [J].
Chapin, FS ;
Sala, OE ;
Burke, IC ;
Grime, JP ;
Hooper, DU ;
Lauenroth, WK ;
Lombard, A ;
Mooney, HA ;
Mosier, AR ;
Naeem, S ;
Pacala, SW ;
Roy, J ;
Steffen, WL ;
Tilman, D .
BIOSCIENCE, 1998, 48 (01) :45-52
[6]  
DESOUSA F, 1999, FORTUNA RESERVA BIOL
[7]   EFFECT OF GRAZING BY TADPOLES ON STRUCTURE OF A PERIPHYTON COMMUNITY [J].
DICKMAN, M .
ECOLOGY, 1968, 49 (06) :1188-&
[8]  
Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO
[9]  
2
[10]   Ecosystem engineering by a dominant detritivore in a diverse tropical stream [J].
Flecker, AS .
ECOLOGY, 1996, 77 (06) :1845-1854