Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting

被引:22
作者
Alqahtani, Mahdi [1 ,2 ]
Sathasivam, Sanjayan [3 ]
Cui, Fan [1 ]
Steier, Ludmilla [4 ]
Xia, Xueming [3 ]
Blackman, Chris [3 ]
Kim, Eunsoo [5 ]
Shin, Hyunjung [5 ]
Benamara, Mourad [6 ]
Mazur, Yuriy I. [6 ]
Salamo, Gregory J. [6 ]
Parkin, Ivan P. [3 ]
Liu, Huiyun [1 ]
Wu, Jiang [1 ,7 ]
机构
[1] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[2] KACST, Riyadh 12371, Saudi Arabia
[3] UCL, Dept Chem, London WC1H 0AJ, England
[4] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[5] Sungkyunkwan Univ, Dept Energy Sci, Seoul 440746, South Korea
[6] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[7] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
PHOTOCATHODE; LAYER; PHOTOANODES; TIO2;
D O I
10.1039/c9ta01328h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoelectrochemical production of hydrogen by using sunlight to split water offers a sustainable approach for clean energy generation. III-V semiconductors have shown the highest efficiencies for photoelectrochemical water splitting but the prohibitive cost of commercial single-crystalline GaP wafers limit practical use and large-scale application. Here, we report a high-quality GaP photocathode directly grown on a silicon substrate by solid-source molecular beam epitaxy. The photocathode can be stabilized under acidic electrolyte 1 M HClO4 (pH 0) by combining an amorphous TiO2 layer coated with a molybdenum sulphide MoS2 hydrogen evolution catalyst by atomic layer deposition (ALD). Under simulated AM 1.5G solar illumination, the Si/GaP photocathode yielded a maximum photocurrent density of 0.95 (mA cm(-2)) with a proton reduction onset potential of 467 mV versus the reversible hydrogen electrode. The average faradaic efficiency of the Si/GaP photocathode was measured to be over 73.4 +/- 20.2% for over 100 minutes. The photoelectrochemical studies for the Si/GaP photocathode show the potential for widespread deployment of cost-effective photoelectrodes for hydrogen generation.
引用
收藏
页码:8550 / 8558
页数:9
相关论文
共 27 条
[1]   The frontiers of energy [J].
Armstrong, Robert C. ;
Wolfram, Catherine ;
de Jong, Krijn P. ;
Gross, Robert ;
Lewis, Nathan S. ;
Boardman, Brenda ;
Ragauskas, Arthur J. ;
Ehrhardt-Martinez, Karen ;
Crabtree, George ;
Ramana, M. V. .
NATURE ENERGY, 2016, 1
[2]   Strategies for stable water splitting via protected photoelectrodes [J].
Bae, Dowon ;
Seger, Brian ;
Vesborg, Peter C. K. ;
Hansen, Ole ;
Chorkendorff, Ib .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (07) :1933-1954
[3]   PHOTOELECTROCHEMISTRY [J].
BARD, AJ .
SCIENCE, 1980, 207 (4427) :139-144
[4]   Solar Hydrogen Production Using Molecular Catalysts Immobilized on Gallium Phosphide (111)A and (111)B Polymer-Modified Photocathodes [J].
Beiler, Anna M. ;
Khusnutdinova, Diana ;
Jacob, Samuel I. ;
Moore, Gary F. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (15) :10038-10047
[5]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[6]   Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass [J].
Emmer, Hal ;
Chen, Christopher T. ;
Saive, Rebecca ;
Friedrich, Dennis ;
Horie, Yu ;
Arbabi, Amir ;
Faraon, Andrei ;
Atwater, Harry A. .
SCIENTIFIC REPORTS, 2017, 7
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[9]  
Gu J, 2016, NAT MATER, V15, P456, DOI [10.1038/NMAT4511, 10.1038/nmat4511]
[10]   Antiphase domain tailoring for combination of modal and (4)over-bar-quasi-phase matching in gallium phosphide microdisks [J].
Guilleme, P. ;
Vallet, M. ;
Stodolna, J. ;
Ponchet, A. ;
Cornet, C. ;
Letoublon, A. ;
Feron, P. ;
Durand, O. ;
Leger, Y. ;
Dumeige, Y. .
OPTICS EXPRESS, 2016, 24 (13) :14608-14617