Lossless hybridization between photovoltaic and thermoelectric devices

被引:112
作者
Park, Kwang-Tae [1 ]
Shin, Sun-Mi [1 ]
Tazebay, Abdullah S. [4 ]
Um, Han-Don [1 ]
Jung, Jin-Young [1 ]
Jee, Sang-Won [4 ]
Oh, Min-Wook [2 ]
Park, Su-Dong [2 ]
Yoo, Bongyoung [3 ]
Yu, Choongho [4 ]
Lee, Jung-Ho [1 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Ansan 426791, South Korea
[2] KERI, Creat Electrotechnol Res Ctr, Chang Won 642120, South Korea
[3] Hanyang Univ, Dept Mat Engn, Ansan 426791, South Korea
[4] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
新加坡国家研究基金会;
关键词
SOLAR-CELL; POWER; ENERGY; HEAT; PERFORMANCE; EFFICIENCY; SYSTEM;
D O I
10.1038/srep02123
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (similar to 30% at a 15 degrees C temperature gradient across a TE device).
引用
收藏
页数:6
相关论文
共 29 条
  • [1] Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
    Bell, Lon E.
    [J]. SCIENCE, 2008, 321 (5895) : 1457 - 1461
  • [2] Thermoelectric cooling and power generation
    DiSalvo, FJ
    [J]. SCIENCE, 1999, 285 (5428) : 703 - 706
  • [3] Alternative energy technologies
    Dresselhaus, MS
    Thomas, IL
    [J]. NATURE, 2001, 414 (6861) : 332 - 337
  • [4] SOLAR-CELL FILL FACTORS - GENERAL GRAPH AND EMPIRICAL EXPRESSIONS
    GREEN, MA
    [J]. SOLID-STATE ELECTRONICS, 1981, 24 (08) : 788 - 789
  • [5] Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum
    Guo, Xiao-Zhi
    Zhang, Yi-Duo
    Qin, Da
    Luo, Yan-Hong
    Li, Dong-Mei
    Pang, Yu-Tong
    Meng, Qing-Bo
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (22) : 7684 - 7690
  • [6] Enhanced thermoelectric performance of rough silicon nanowires
    Hochbaum, Allon I.
    Chen, Renkun
    Delgado, Raul Diaz
    Liang, Wenjie
    Garnett, Erik C.
    Najarian, Mark
    Majumdar, Arun
    Yang, Peidong
    [J]. NATURE, 2008, 451 (7175) : 163 - U5
  • [7] Hybrid nanorod-polymer solar cells
    Huynh, WU
    Dittmer, JJ
    Alivisatos, AP
    [J]. SCIENCE, 2002, 295 (5564) : 2425 - 2427
  • [8] A waferscale Si wire solar cell using radial and bulk p-n junctions
    Jung, Jin-Young
    Guo, Zhongyi
    Jee, Sang-Won
    Um, Han-Don
    Park, Kwang-Tae
    Hyun, Moon Seop
    Yang, Jun Mo
    Lee, Jung-Ho
    [J]. NANOTECHNOLOGY, 2010, 21 (44)
  • [9] Kelzenberg MD, 2010, NAT MATER, V9, P239, DOI [10.1038/NMAT2635, 10.1038/nmat2635]
  • [10] Photovoltaic-thermoelectric hybrid systems: A general optimization methodology
    Kraemer, D.
    Hu, L.
    Muto, A.
    Chen, X.
    Chen, G.
    Chiesa, M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (24)