Optical soliton perturbation with Gerdjikov-Ivanov equation by modified simple equation method

被引:58
作者
Biswas, Anjan [1 ,2 ,3 ]
Yildirim, Yakup [4 ]
Yasar, Emrullah [4 ]
Triki, Houria [5 ]
Alshomrani, Ali Saleh [2 ]
Ullah, Malik Zaka [2 ]
Zhou, Qin [6 ]
Moshokoa, Seithuti P. [3 ]
Belic, Milivoj [7 ]
机构
[1] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[4] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
[5] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, POB 12, Annaba 23000, Algeria
[6] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[7] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2018年 / 157卷
基金
美国国家科学基金会;
关键词
Solitons; Perturbation; Modified simple equation method; INTEGRABLE SYSTEMS;
D O I
10.1016/j.ijleo.2017.12.101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The modified simple equation scheme is employed to secure dark and singular optical soliton solution to the perturbed Gerdjikov-Ivanov equation that models pulse dynamics in optical fibers and PCF. The solvability conditions for this algorithm is also presented. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 15 条
[1]   Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Babatin, M. M. .
OPTIK, 2017, 148 :209-214
[2]   Chirp-free bright optical solitons for perturbed Gerdjikov-Ivanov equation by semi-inverse variational principle [J].
Biswas, Anjan ;
Alqahtani, Rubayyi T. .
OPTIK, 2017, 147 :72-76
[3]   Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation [J].
Fan, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7769-7782
[4]   Two expanding integrable systems of the GI soliton hierarchy and a generalized GI hierarchy with self-consistent sources as well as its extension form [J].
Guo, Xiurong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (12) :4065-4070
[5]   Bifurcations and new exact travelling wave solutions for the Gerdjikov-Ivanov equation [J].
He, Bin ;
Meng, Qing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) :1783-1790
[6]   Analytical solutions of the Gerdjikov-Ivanov equation by using exp(-φ(ξ))-expansion method [J].
Kadkhoda, Nematollah ;
Jafari, Hossein .
OPTIK, 2017, 139 :72-76
[7]   Exact solutions of Gerdjikov-Ivanov equation [J].
Li Xiang-Zheng ;
Li Xiu-Yong ;
Zhao Li-Ying ;
Zhang Jin-Liang .
ACTA PHYSICA SINICA, 2008, 57 (04) :2031-2034
[8]   Optical soliton solutions for the Gerdjikov-Ivanov model via tan(φ/2)-expansion method [J].
Manafian, Jalil ;
Lakestani, Mehrdad .
OPTIK, 2016, 127 (20) :9603-9620
[9]  
Nie H., 2017, ANAL MATH P IN PRESS
[10]   Localized pulses for the quintic derivative nonlinear Schrodinger equation on a continuous-wave background [J].
Rogers, C. ;
Chow, K. W. .
PHYSICAL REVIEW E, 2012, 86 (03)