Growing random forest on deep convolutional neural networks for scene categorization

被引:54
作者
Bai, Shuang [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
关键词
Scene categorization; Random forest; Convolutional neural networks; Feature selection; WORDS;
D O I
10.1016/j.eswa.2016.10.038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breakthrough performances have been achieved in computer vision by utilizing deep neural networks. In this paper we propose to use random forest to classify image representations obtained by concatenating multiple layers of learned features of deep convolutional neural networks for scene classification. Specifically, we first use deep convolutional neural networks pre-trained on the large-scale image database Places to extract features from scene images. Then, we concatenate multiple layers of features of the deep neural networks as image representations. After that, we use random forest as the classifier for scene classification. Moreover, to reduce feature redundancy in image representations we derived a novel feature selection method for selecting features that are suitable for random forest classification. Extensive experiments are conducted on two benchmark datasets, i.e. MIT-Indoor and UIUC-Sports. Obtained results demonstrated the effectiveness of the proposed method. The contributions of the paper are as follows. First, by extracting multiple layers of deep neural networks, we can explore more information of image contents for determining their categories. Second, we proposed a novel feature selection method that can be used to reduce redundancy in features obtained by deep neural networks for classification based on random forest. In particular, since deep learning methods can be used to augment expert systems by having the systems essentially training themselves, and the proposed framework is general, which can be easily extended to other intelligent systems that utilize deep learning methods, the proposed method provide a potential way for improving performances of other expert and intelligent systems. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:279 / 287
页数:9
相关论文
共 49 条
  • [31] Li Li-Jia., 2007, P ICCV
  • [32] Region Contextual Visual Words for scene categorization
    Liu, Shuoyan
    Xu, De
    Feng, Songhe
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 11591 - 11597
  • [33] Risk assessment in social lending via random forests
    Malekipirbazari, Milad
    Aksakalli, Vural
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (10) : 4621 - 4631
  • [34] Moosmann F., 2008, IEEE T PATTERN ANAL
  • [35] Mousavian A., 2015, CORR
  • [36] Modeling the shape of the scene: A holistic representation of the spatial envelope
    Oliva, A
    Torralba, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2001, 42 (03) : 145 - 175
  • [37] Quattoni A, 2009, PROC CVPR IEEE, P413, DOI 10.1109/CVPRW.2009.5206537
  • [38] A thousand words in a scene
    Quelhas, Pedro
    Monay, Florent
    Odobez, Jean-Marc
    Gatica-Perez, Daniel
    Tuytelaars, Tinne
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (09) : 1575 - 1589
  • [39] Razavian A., 2014, CVPR 2014 DEEP VIS W
  • [40] Shabou A, 2012, PROC CVPR IEEE, P3618, DOI 10.1109/CVPR.2012.6248107