Gradient estimates in Orlicz space for nonlinear elliptic equations

被引:74
作者
Byun, Sun-Sig [2 ]
Yao, Fengping [1 ]
Zhou, Shulin [3 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
关键词
Elliptic PDE of p-Laplacian type; Reifenberg flat domain; BMO space; Orlicz space;
D O I
10.1016/j.jfa.2008.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize gradient estimates in L-p space to Orlicz space for weak solutions of elliptic equations of p-Laplacian type with small BMO coefficients in delta-Reifenberg flat domains. Our results improve the known results for such equations using a harmonic analysis-free technique. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1851 / 1873
页数:23
相关论文
共 27 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
[Anonymous], 2003, PURE APPL MAT AMST
[3]   An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (01) :11-24
[4]   Lp estimates for parabolic equations in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 223 (01) :44-85
[5]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[6]   Nonlinear elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe ;
Zhou, Shulin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) :167-196
[7]   Parabolic equations in time dependent Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe .
ADVANCES IN MATHEMATICS, 2007, 212 (02) :797-818
[8]   Hardy inequalities in Orlicz spaces [J].
Cianchi, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (06) :2459-2478
[9]  
David G, 2001, COMMUN PUR APPL MATH, V54, P385, DOI 10.1002/1097-0312(200104)54:4<385::AID-CPA1>3.0.CO
[10]  
2-M