Asymptotic analysis of the Poisson-Boltzmann equation in biological membrane channels

被引:2
作者
El Jarroudi, Mustapha [1 ]
Brillard, Alain [2 ]
机构
[1] Univ Abdelmalek Essadi, FST Tanger, Dept Math, Tanger, Morocco
[2] Univ Haute Alsace, Lab Gest Risques & Environm, F-68093 Mulhouse, France
关键词
Electrostatic interaction; Biological membrane; Gap junction; Poisson-Boltzmann equation; Debye length; Asymptotic analysis; BOUNDARY-CONDITIONS; HOMOGENIZATION; ENERGY; ELECTROSTATICS; DOMAIN; MODEL;
D O I
10.1016/j.mbs.2013.01.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Poisson-Boltzmann equation has been increasingly used for the description of biomolecular systems in order to derive their electrostatic properties. We here consider a domain consisting of two living cells which communicate through a system of proteins which assemble at specific membrane areas building microchannels called gap junctions. We describe the asymptotic behavior of the solution of the Poisson-Boltzmann equation posed in this domain. Using F-convergence tools, we derive some electrostatic properties of the biological membrane with respect to a vanishing parameter which is simultaneously associated to the membrane thinness, to the diameter of the gap junction microchannels and to the Debye length parameter which characterizes the spatial scale electrostatic interactions between particles within the gap junctions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条
[21]   ARGOS: An adaptive refinement goal-oriented solver for the linearized Poisson-Boltzmann equation [J].
Nakov, Svetoslav ;
Sobakinskaya, Ekaterina ;
Renger, Thomas ;
Kraus, Johannes .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (26) :1832-1860
[22]   On the justification of the Poisson-Boltzmann equation in the context of technological plasmas [J].
Koehn, Kevin ;
Krueger, Dennis ;
Kemaneci, Efe ;
Xu, Liang ;
Eremin, Denis ;
Brinkmann, Ralf Peter .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (10)
[23]   A modified Poisson-Boltzmann equation applied to protein adsorption [J].
Gama, Marlon de Souza ;
Santos, Mirella Simoes ;
de Almeida Lima, Eduardo Rocha ;
Tavares, Frederico Wanderley ;
Barreto Barreto, Amaro Gomes, Jr. .
JOURNAL OF CHROMATOGRAPHY A, 2018, 1531 :74-82
[24]   The geometry behind numerical solvers of the Poisson-Boltzmann equation [J].
Shi, Xinwei ;
Koehl, Patrice .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (05) :1032-1050
[25]   Basis adaptation for the stochastic nonlinear Poisson-Boltzmann equation [J].
Khodadadian, Amirreza ;
Heitzinger, Clemens .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2016, 15 (04) :1393-1406
[26]   Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation [J].
Kwon, In ;
Kwak, Do Y. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (03) :928-946
[27]   Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation [J].
Burak Aksoylu ;
Stephen D. Bond ;
Eric C. Cyr ;
Michael Holst .
Journal of Scientific Computing, 2012, 52 :202-225
[28]   Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation [J].
Aksoylu, Burak ;
Bond, Stephen D. ;
Cyr, Eric C. ;
Holst, Michael .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (01) :202-225
[29]   A new boundary condition for the nonlinear Poisson-Boltzmann equation in electrostatic analysis of proteins [J].
Amihere, Sylvia ;
Ren, Yiming ;
Geng, Weihua ;
Zhao, Shan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 528
[30]   Enriched gradient recovery for interface solutions of the Poisson-Boltzmann equation [J].
Borleske, George ;
Zhou, Y. C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421