On eigenproblem for circulant matrices in max-algebra

被引:17
作者
Plávka, J [1 ]
机构
[1] Tech Univ, Fac Elect Engn & Informat, Dept Math, Kosice 04213, Slovakia
关键词
eigenproblem; circulant matrix;
D O I
10.1080/02331930108844576
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The eigenproblem for circulant matrices in max-algebra is shown to be solvable in O(n(2)) time. An algorithm is described which for a given n x n real circulant matrix (a(ij)) computes an eigenvalue lambda and all eigenvectors x = (x(1),...,x(n)) such that max(j=1,...,n) (a(y) + x(j)) = lambda + x(i) (i = 1,...,n). The results improve the standard O(n(3)) algorithm used in the general case.
引用
收藏
页码:477 / 483
页数:7
相关论文
共 50 条
[41]   CIRCULANT MATRICES: NORM, POWERS, AND POSITIVITY [J].
Lindner, Marko .
OPUSCULA MATHEMATICA, 2018, 38 (06) :849-857
[42]   ON EXISTENCE OF WILLIAMSON SYMMETRIC CIRCULANT MATRICES [J].
Mahato, Hrishikesh .
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2011, 6 (01) :27-39
[43]   The properties and iterative algorithms of circulant matrices [J].
Lu, Chengbo .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (03) :592-605
[44]   A generalization of circulant Hadamard and conference matrices [J].
Turek, Ondrej ;
Goyeneche, Dardo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 :241-265
[45]   Nearly Approximate Transitivity (AT) for Circulant Matrices [J].
Handelman, David .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (02) :381-415
[46]   The computation of the square roots of circulant matrices [J].
Lu, Chengbo ;
Gu, Chuanqing .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (16) :6819-6829
[47]   CIRCULANT AND NEGACYCLIC MATRICES VIA TETRANACCI NUMBERS [J].
Ozkoc, Arzu ;
Ardiyok, Elif .
HONAM MATHEMATICAL JOURNAL, 2016, 38 (04) :725-738
[48]   ON THE CIRCULANT MATRICES WITH THE q-BINOMIAL COEFFICIENTS [J].
Dalkilic, Seyda ;
Kocer, E. Gokcen .
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (03) :309-319
[49]   NUMERICAL-SOLUTION OF THE EIGENPROBLEM FOR BANDED, SYMMETRICAL TOEPLITZ MATRICES [J].
HANDY, SL ;
BARLOW, JL .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (01) :205-214
[50]   Spectral Norm of Circulant-Type Matrices [J].
Arup Bose ;
Rajat Subhra Hazra ;
Koushik Saha .
Journal of Theoretical Probability, 2011, 24 :479-516