On eigenproblem for circulant matrices in max-algebra

被引:17
作者
Plávka, J [1 ]
机构
[1] Tech Univ, Fac Elect Engn & Informat, Dept Math, Kosice 04213, Slovakia
关键词
eigenproblem; circulant matrix;
D O I
10.1080/02331930108844576
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The eigenproblem for circulant matrices in max-algebra is shown to be solvable in O(n(2)) time. An algorithm is described which for a given n x n real circulant matrix (a(ij)) computes an eigenvalue lambda and all eigenvectors x = (x(1),...,x(n)) such that max(j=1,...,n) (a(y) + x(j)) = lambda + x(i) (i = 1,...,n). The results improve the standard O(n(3)) algorithm used in the general case.
引用
收藏
页码:477 / 483
页数:7
相关论文
共 50 条
[31]   On the norms of circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers [J].
Naim Tuglu ;
Can Kızılateş .
Journal of Inequalities and Applications, 2015
[32]   Smith forms of circulant polynomial matrices [J].
Telloni, Agnese Ilaria ;
Williams, Gerald .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 :559-572
[33]   On Binary Embedding using Circulant Matrices [J].
Yu, Felix X. ;
Bhaskara, Aditya ;
Kumar, Sanjiv ;
Gong, Yunchao ;
Chang, Shih-Fu .
JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
[34]   The group inverse of some circulant matrices [J].
Carmona, A. ;
Encinas, A. M. ;
Jimenez, M. J. ;
Mitjana, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 :415-436
[35]   On the set covering polyhedron of circulant matrices [J].
Argiroffo, Gabriela R. ;
Bianchi, Silvia M. .
DISCRETE OPTIMIZATION, 2009, 6 (02) :162-173
[36]   Invertibility of circulant matrices of arbitrary size [J].
Choi, Jeong-Ok ;
Hur, Youngmi .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21) :7057-7074
[37]   On the permanents of circulant and degenerate Schur matrices [J].
Kocharovsky, Vitaly V. ;
Kocharovsky, Vladimir V. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 :366-381
[38]   On prime factors of determinants of circulant matrices [J].
Sburlati, Giovanni .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) :100-106
[39]   A cogredient Algorithm for the Product of Circulant Matrices [J].
Liu, Xueting ;
Li, Hongkui ;
Fang, Hualing .
ACC 2009: ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2009, :72-76
[40]   CIRCULANT PRECONDITIONERS FOR COMPLEX TOEPLITZ MATRICES [J].
CHAN, RH ;
YEUNG, MC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :1193-1207