On a Kirchhoff Singular p(x)-Biharmonic Problem with Navier Boundary Conditions

被引:0
作者
Kefi, Khaled [1 ,2 ]
Saoudi, Kamel [3 ,4 ]
Al-Shomrani, Mohammed Mosa [5 ]
机构
[1] Northern Border Univ, Fac Comp Sci & Informat Technol, Rafha, Saudi Arabia
[2] Fac Sci Tunis El Manar, Math Dept, Tunis 1060, Tunisia
[3] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
[5] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Kirchhoff problem; Navier boundary condition; Singular problem; p(x)-Biharmonic operator; Variational methods; Existence results; Generalized Lebesgue; Sobolev spaces; VARIABLE EXPONENT; EQUATION; EXISTENCE; MULTIPLICITY; SPACES;
D O I
10.1007/s10440-020-00352-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the present paper is to study the existence of solutions for the following nonhomogeneous singular Kirchhoff problem involving the p(x)-biharmonic operator: {M(t)(Delta(2)(p(x))u+a(x)vertical bar u vertical bar(p(x)-2)u) = g(x)u(-gamma(x)) -/+ lambda f(x,u), in Omega, Delta u = u = 0, on partial derivative Omega, where Omega subset of R-N , (N >= 3) be a bounded domain with C-2 boundary, lambda is a positive parameter, gamma: (Omega) over bar -> (0,1) be a continuous function, p is an element of C((Omega) over bar) with 1 < p(-) := inf(x is an element of Omega) p(x) <= p(+) := sup(x is an element of Omega) p(x) < N/2, as usual, p*(x) = Np(x)/N - 2p(x), g is an element of Lp*(x)/p*(x)+gamma(x)-1(Omega). We assume that M(t) is a continuous function with t := integral(Omega)1/p(x)(vertical bar Delta u vertical bar(p(x)) + a(x)vertical bar u vertical bar(p(x)))dx, and assumed to verify assertions (M1)-(M3) in Sect. 3, moreover f (x, u) are assumed to satisfy assumptions (f1)-(f6). In the proofs of our results we use variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue Sobolev spaces.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 50 条
[41]   On a p(.)-biharmonic problem with no-flux boundary condition [J].
Boureanu, Maria-Magdalena ;
Radulescu, Vicentiu ;
Repovs, Dusan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (09) :2505-2515
[42]   KIRCHHOFF BI-NONLOCAL PROBLEM INVOLVING p(x)-BIHARMONIC OPERATOR WITH A HARDY TERM [J].
Alaoui, My driss morchid ;
Aboubker, Hassan .
JOURNAL OF DYNAMICS AND GAMES, 2025,
[43]   Infinitely many solutions for a p(x)-triharmonic equation with Navier boundary conditions [J].
Belakhdar, Adnane ;
Belaouidel, Hassan ;
Filali, Mohammed ;
Tsouli, Najib .
JOURNAL OF APPLIED ANALYSIS, 2025, 31 (01) :45-54
[44]   Three solutions for a Navier boundary value problem involving the p-biharmonic [J].
Li, Chun ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1339-1347
[45]   p(x)-BIHARMONIC EQUATIONS INVOLVING (h, r(x))-HARDY SINGULAR COEFFICIENTS WITH NO-FLUX BOUNDARY CONDITIONS [J].
Liu, Jian ;
Zhao, Zengqin .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 64 (02) :561-576
[46]   Minimax method involving singular p(x)-Kirchhoff equation [J].
Ben Ali, K. ;
Ghanmi, A. ;
Kefi, K. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
[47]   Singular p-biharmonic problem with the Hardy potential [J].
Drissi, Amor ;
Ghanmi, Abdeljabbar ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (04) :762-782
[48]   ON THE p(x)-KIRCHHOFF-TYPE EQUATION INVOLVING THE p(x)-BIHARMONIC OPERATOR VIA THE GENUS THEORY [J].
Taarabti, S. ;
El Allali, Z. ;
Haddouch, K. Ben .
UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (06) :978-989
[49]   Existence results for a class of singular p(x)-Kirchhoff equations [J].
Avci, Mustafa .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (07) :1222-1253
[50]   Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition [J].
Dai, Guowei ;
Wei, Jian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) :3420-3430