On a Kirchhoff Singular p(x)-Biharmonic Problem with Navier Boundary Conditions

被引:0
作者
Kefi, Khaled [1 ,2 ]
Saoudi, Kamel [3 ,4 ]
Al-Shomrani, Mohammed Mosa [5 ]
机构
[1] Northern Border Univ, Fac Comp Sci & Informat Technol, Rafha, Saudi Arabia
[2] Fac Sci Tunis El Manar, Math Dept, Tunis 1060, Tunisia
[3] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
[5] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Kirchhoff problem; Navier boundary condition; Singular problem; p(x)-Biharmonic operator; Variational methods; Existence results; Generalized Lebesgue; Sobolev spaces; VARIABLE EXPONENT; EQUATION; EXISTENCE; MULTIPLICITY; SPACES;
D O I
10.1007/s10440-020-00352-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the present paper is to study the existence of solutions for the following nonhomogeneous singular Kirchhoff problem involving the p(x)-biharmonic operator: {M(t)(Delta(2)(p(x))u+a(x)vertical bar u vertical bar(p(x)-2)u) = g(x)u(-gamma(x)) -/+ lambda f(x,u), in Omega, Delta u = u = 0, on partial derivative Omega, where Omega subset of R-N , (N >= 3) be a bounded domain with C-2 boundary, lambda is a positive parameter, gamma: (Omega) over bar -> (0,1) be a continuous function, p is an element of C((Omega) over bar) with 1 < p(-) := inf(x is an element of Omega) p(x) <= p(+) := sup(x is an element of Omega) p(x) < N/2, as usual, p*(x) = Np(x)/N - 2p(x), g is an element of Lp*(x)/p*(x)+gamma(x)-1(Omega). We assume that M(t) is a continuous function with t := integral(Omega)1/p(x)(vertical bar Delta u vertical bar(p(x)) + a(x)vertical bar u vertical bar(p(x)))dx, and assumed to verify assertions (M1)-(M3) in Sect. 3, moreover f (x, u) are assumed to satisfy assumptions (f1)-(f6). In the proofs of our results we use variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue Sobolev spaces.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 50 条
[31]   MULTIPLE SOLUTIONS FOR p ( x )- KIRCHHOFF TYPE PROBLEMS WITH EXTENDED ROBIN BOUNDARY CONDITIONS [J].
Baladi, Houssam ;
Aglzim, Abdellatif ;
Filali, Mohammed ;
Tsouli, Najib .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (83)
[32]   Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator [J].
Yin, Honghui ;
Xu, Mei .
ANNALES POLONICI MATHEMATICI, 2013, 109 (01) :47-58
[33]   Existence of solutions for a p(x)-biharmonic problem under Neumann boundary conditions [J].
Hsini, Mounir ;
Irzi, Nawal ;
Kefi, Khaled .
APPLICABLE ANALYSIS, 2021, 100 (10) :2188-2199
[34]   MULTIPLICITY OF SOLUTIONS FOR SOME p(x)-BIHARMONIC PROBLEM [J].
Ghanmi, Abdeljabbar .
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (04) :401-421
[35]   A critical p(x)-biharmonic Kirchhoff type problem with indefinite weight under no flux boundary condition [J].
Khalid Soualhine ;
Mohammed Filali ;
Mohamed Talbi ;
Najib Tsouli .
Boletín de la Sociedad Matemática Mexicana, 2022, 28
[36]   EIGENVALUES OF SOME p(x)-BIHARMONIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS [J].
Hsini, Mounir ;
Irzi, Nawal ;
Kefi, Khaled .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) :2543-2558
[37]   Existence and multiplicity of solutions to the Navier boundary value problem for a class of (p(x); q(x))-biharmonic systems [J].
Belaouidel, Hassan ;
Ourraoui, Anass ;
Tsouli, Najib .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (02) :229-241
[38]   Existence Results for a Class of p(x)- Kirchhoff Problem with a Singular Weight [J].
Allaoui, Mostafa ;
Ourraoui, Anass .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) :677-686
[39]   Multiple solutions of p-biharmonic equations with Navier boundary conditions [J].
Bisci, Giovanni Molica ;
Repovs, Dusan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) :271-284
[40]   On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities [J].
Avci, Mustafa .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024,