On a Kirchhoff Singular p(x)-Biharmonic Problem with Navier Boundary Conditions

被引:0
作者
Kefi, Khaled [1 ,2 ]
Saoudi, Kamel [3 ,4 ]
Al-Shomrani, Mohammed Mosa [5 ]
机构
[1] Northern Border Univ, Fac Comp Sci & Informat Technol, Rafha, Saudi Arabia
[2] Fac Sci Tunis El Manar, Math Dept, Tunis 1060, Tunisia
[3] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
[5] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Kirchhoff problem; Navier boundary condition; Singular problem; p(x)-Biharmonic operator; Variational methods; Existence results; Generalized Lebesgue; Sobolev spaces; VARIABLE EXPONENT; EQUATION; EXISTENCE; MULTIPLICITY; SPACES;
D O I
10.1007/s10440-020-00352-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the present paper is to study the existence of solutions for the following nonhomogeneous singular Kirchhoff problem involving the p(x)-biharmonic operator: {M(t)(Delta(2)(p(x))u+a(x)vertical bar u vertical bar(p(x)-2)u) = g(x)u(-gamma(x)) -/+ lambda f(x,u), in Omega, Delta u = u = 0, on partial derivative Omega, where Omega subset of R-N , (N >= 3) be a bounded domain with C-2 boundary, lambda is a positive parameter, gamma: (Omega) over bar -> (0,1) be a continuous function, p is an element of C((Omega) over bar) with 1 < p(-) := inf(x is an element of Omega) p(x) <= p(+) := sup(x is an element of Omega) p(x) < N/2, as usual, p*(x) = Np(x)/N - 2p(x), g is an element of Lp*(x)/p*(x)+gamma(x)-1(Omega). We assume that M(t) is a continuous function with t := integral(Omega)1/p(x)(vertical bar Delta u vertical bar(p(x)) + a(x)vertical bar u vertical bar(p(x)))dx, and assumed to verify assertions (M1)-(M3) in Sect. 3, moreover f (x, u) are assumed to satisfy assumptions (f1)-(f6). In the proofs of our results we use variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue Sobolev spaces.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 50 条
[21]   KIRCHHOFF TYPE p(x)-BIHARMONIC EQUATIONS INVOLVING (h, r(x))-HARDY SINGULAR COEFFICIENTS WITH NO-FLUX BOUNDARY CONDITIONS [J].
Liu, Jian ;
Zhao, Zengqin ;
Kefi, Khaled .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (03) :397-412
[22]   Existence results of infinitely many solutions for p(x)-Kirchhoff type triharmonic operator with Navier boundary conditions [J].
Rahal, Belgacem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) :1133-1146
[23]   MULTIPLE SOLUTIONS FOR p(x)-KIRCHHOFF TYPE PROBLEMS WITH ROBIN BOUNDARY CONDITIONS [J].
Afrouzi, Ghasem A. ;
Nguyen Thanh Chung ;
Naghizadeh, Zohreh .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (24) :1-16
[24]   EXISTENCE OF THREE SOLUTIONS FOR A NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p(x)-BIHARMONIC [J].
Yin, Honghui ;
Liu, Ying .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) :1817-1826
[25]   Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions [J].
S. Heidarkhani ;
G. A. Afrouzi ;
S. Moradi ;
G. Caristi ;
Bin Ge .
Zeitschrift für angewandte Mathematik und Physik, 2016, 67
[26]   Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions [J].
Heidarkhani, S. ;
Afrouzi, G. A. ;
Moradi, S. ;
Caristi, G. ;
Ge, Bin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[27]   Multiple Solutions for Nonlinear Navier Boundary Systems Involving (p1(x), ... , pn(x))-Biharmonic Problem [J].
Miao, Qing .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
[28]   Multiplicity results for p(x)-biharmonic equations with nonlinear boundary conditions [J].
Rasouli, S. H. .
APPLICABLE ANALYSIS, 2023, 102 (16) :4489-4500
[29]   Solutions for a quasilinear elliptic p(x)-Kirchhoff type problem with weight and nonlinear Robin boundary conditions [J].
Ellahyani, Brahim ;
El Hachimi, Abderrahmane .
MATHEMATISCHE NACHRICHTEN, 2022, 295 (02) :323-344
[30]   On a p(.)-biharmonic problem of Kirchhoff type involving critical growth [J].
Nguyen Thanh Chung ;
Ky Ho .
APPLICABLE ANALYSIS, 2022, 101 (16) :5700-5726