Single Channel ECG for Obstructive Sleep Apnea Severity Detection Using a Deep Learning Approach

被引:0
|
作者
Banluesombatkul, Nannapas [1 ]
Rakthanmanon, Thanawin [1 ,2 ]
Wilaiprasitporn, Theerawit [1 ]
机构
[1] Vidyasirimedhi Inst Sci Technol, Sch Informat Sci & Technol, Bioinspired Robot & Neural Engn Lab, Pa Yup Nai, Thailand
[2] Kasetsart Univ, Dept Comp Engn, Bangkok, Thailand
来源
PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE | 2018年
关键词
Obstructive sleep apnea (OSA) severity detection; Deep Learning; Single channel ECG; OSTEOPOROTIC FRACTURES; ALGORITHM; DEVICES; MEN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Obstructive sleep apnea (OSA) is a common sleep disorder caused by abnormal breathing. The severity of OSA can lead to many symptoms such as sudden cardiac death (SCD). Polysomnography (PSG) is a gold standard for OSA diagnosis. It records many signals from the patient's body for at least one whole night and calculates the Apnea-Hypopnea Index (AHI) which is the number of apnea or hypopnea incidences per hour. This value is then used to classify patients into OSA severity levels. However, it has many disadvantages and limitations. Consequently, we proposed a novel methodology of OSA severity classification using a Deep Learning approach. We focused on the classification between normal subjects (AHI < 5) and severe OSA patients (AHI > 30). The 15-second raw ECG records with apnea or hypopnea events were used with a series of one-dimensional Convolutional Neural Networks (1-D CNN) for automatic feature extraction, deep recurrent neural networks with Long Short-Term Memory (LSTM) for temporal information extraction, and fully-connected neural networks (DNN) for feature encoding from a large number of features until it closed to two classes. The main advantages of our proposed method include easier data acquisition, instantaneous OSA severity detection, and effective feature extraction without domain knowledge from expertise. To evaluate our proposed method, 545 subjects of which 364 were normal and 181 were severe OSA patients obtained from the MrOS sleep study (Visit 1) database were used with the k-fold cross-validation technique. The accuracy of 79.45% for OSA severity classification with sensitivity, specificity, and F-score was achieved. This is significantly higher than the results from the SVM classifier with RR Intervals and ECG derived respiration (EDR) signal feature extraction. The promising result shows that this proposed method is a good start for the detection of OSA severity from a single channel ECG which can be obtained from wearable devices at home and can also be applied to near realtime alerting systems such as before SCD occurs.
引用
收藏
页码:2011 / 2016
页数:6
相关论文
共 50 条
  • [1] Deep Learning Approaches for Early Detection of Obstructive Sleep Apnea Using Single-Channel ECG: A Systematic Literature Review
    Singh, Nivedita
    Talwekar, R. H.
    BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023, 2024, 2003 : 117 - 130
  • [2] Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture
    Liu, Hang
    Cui, Shaowei
    Zhao, Xiaohui
    Cong, Fengyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [3] Diagnosis of Obstructive Sleep Apnea from ECG Signals Using Machine Learning and Deep Learning Classifiers
    Sheta, Alaa
    Turabieh, Hamza
    Thaher, Thaer
    Too, Jingwei
    Mafarja, Majdi
    Hossain, Md Shafaeat
    Surani, Salim R.
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [4] Detection and severity assessment of obstructive sleep apnea according to deep learning of single-lead electrocardiogram signals
    Zhang, Yitong
    Shi, Yewen
    Su, Yonglong
    Cao, Zine
    Li, Chengjian
    Xie, Yushan
    Niu, Xiaoxin
    Yuan, Yuqi
    Ma, Lina
    Zhu, Simin
    Zhou, Yanuo
    Wang, Zitong
    Hei, XinHong
    Shi, Zhenghao
    Ren, Xiaoyong
    Liu, Haiqin
    JOURNAL OF SLEEP RESEARCH, 2025, 34 (01)
  • [5] Detection of sleep apnea using deep neural networks and single-lead ECG signals
    Zarei, Asghar
    Beheshti, Hossein
    Asl, Babak Mohammadzadeh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [6] Detection of Obstructive Sleep Apnoea by ECG signals using Deep Learning Architectures
    Almutairi, Haifa
    Hassan, Ghulam Mubashar
    Datta, Amitava
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1382 - 1386
  • [7] Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals
    Yuxing Lin
    Hongyi Zhang
    Wanqing Wu
    Xingen Gao
    Fei Chao
    Juqiang Lin
    Physical and Engineering Sciences in Medicine, 2024, 47 : 119 - 133
  • [8] Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals
    Lin, Yuxing
    Zhang, Hongyi
    Wu, Wanqing
    Gao, Xingen
    Chao, Fei
    Lin, Juqiang
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2024, 47 (01) : 119 - 133
  • [9] DEEP LEARNING-BASED SLEEP APNEA DETECTION USING SINGLE-LEAD ECG SIGNALS FROM THE PHYSIONET APNEA-ECG DATABASE
    Wicaksono, Pandu
    Yunanda, Rezki
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,
  • [10] DEEP LEARNING-BASED SLEEP APNEA DETECTION USING SINGLE-LEAD ECG SIGNALS FROM THE PHYSIONET APNEA-ECG DATABASE
    Wicaksono, Pandu
    Yunanda, Rezki
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,