Approximate Solution for the Duffing-Harmonic Oscillator by the Enhanced Cubication Method

被引:26
|
作者
Elias-Zuniga, Alex [1 ]
Martinez-Romero, Oscar [1 ]
Cordoba-Diaz, Renek. [1 ]
机构
[1] Tecnol Monterrey, Dept Ingn Mecan, Monterrey 64849, NL, Mexico
关键词
MEAN-SQUARE METHOD; BALANCE;
D O I
10.1155/2012/618750
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The cubication and the equivalent nonlinearization methods are used to replace the original Duffing-harmonic oscillator by an approximate Duffing equation in which the coefficients for the linear and cubic terms depend on the initial oscillation amplitude. It is shown that this procedure leads to angular frequency values with a maximum relative error of 0.055%. This value is 21% lower than the relative errors attained by previously developed approximate solutions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
    Belendez, A.
    Mendez, D. I.
    Fernandez, E.
    Marini, S.
    Pascual, I.
    PHYSICS LETTERS A, 2009, 373 (32) : 2805 - 2809
  • [2] An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
    Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
    不详
    Phys Lett Sect A Gen At Solid State Phys, 32 (2805-2809):
  • [3] Solution of a Duffing-harmonic oscillator by the method of harmonic balance
    Hu, H.
    Tang, J. H.
    JOURNAL OF SOUND AND VIBRATION, 2006, 294 (03) : 637 - 639
  • [4] Improved analytical approximate solutions of the Duffing-harmonic oscillator
    Li, Pengsong
    Wu, Baisheng
    Zhendong yu Chongji/Journal of Vibration and Shock, 2004, 23 (03): : 113 - 116
  • [5] Analytical study on a Duffing-harmonic oscillator
    Tiwari, SB
    Rao, BN
    Swamy, NS
    Sai, KS
    Nataraja, HR
    JOURNAL OF SOUND AND VIBRATION, 2005, 285 (4-5) : 1217 - 1222
  • [6] A new analytical technique based on harmonic balance method to determine approximate periods for Duffing-harmonic oscillator
    Hosen, Md. Alal
    Chowdhury, M. S. H.
    ALEXANDRIA ENGINEERING JOURNAL, 2015, 54 (02) : 233 - 239
  • [7] A new analytical approach to the Duffing-harmonic oscillator
    Lim, CW
    Wu, BS
    PHYSICS LETTERS A, 2003, 311 (4-5) : 365 - 373
  • [8] Solutions of the Duffing-harmonic oscillator by an iteration procedure
    Hu, H.
    JOURNAL OF SOUND AND VIBRATION, 2006, 298 (1-2) : 446 - 452
  • [9] Homotopy analysis approach to Duffing-harmonic oscillator
    Feng, Shao-dong
    Chen, Li-qun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (09) : 1083 - 1089
  • [10] A new analytical approximation to the Duffing-harmonic oscillator
    Fesanghary, M.
    Pirbodaghi, T.
    Asghari, M.
    Sojoudi, H.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 571 - 576