Semiclassical S-matrix and black hole entropy in dilaton gravity

被引:0
作者
Fitkevich, Maxim [1 ,2 ]
Levkov, Dmitry [1 ,3 ]
Sibiryakov, Sergey [1 ,4 ,5 ]
机构
[1] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[3] MSU, Inst Theoret & Math Phys, Moscow 119991, Russia
[4] Ecole Polytech Fed Lausanne, Inst Phys, LPTP, CH-1015 Lausanne, Switzerland
[5] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
关键词
Black Holes; 2D Gravity; Models of Quantum Gravity; END-POINT; DYNAMICS;
D O I
10.1007/JHEP08(2020)142
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use complex semiclassical method to compute scattering amplitudes of a point particle in dilaton gravity with a boundary. This model has nonzero minimal black hole mass M-cr. We find that at energies below M-cr the particle trivially scatters off the boundary with unit probability. At higher energies the scattering amplitude is exponentially suppressed. The corresponding semiclassical solution is interpreted as formation of an intermediate black hole decaying into the final-state particle. Relating the suppression of the scattering probability to the number of the intermediate black hole states, we find an expression for the black hole entropy consistent with thermodynamics. In addition, we fix the constant part of the entropy which is left free by the thermodynamic arguments. We rederive this result by modifying the standard Euclidean entropy calculation.
引用
收藏
页数:30
相关论文
共 52 条
[11]   Semiclassical S-matrix for black holes [J].
Bezrukov, Fedor ;
Levkov, Dmitry ;
Sibiryakov, Sergey .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12) :1-42
[12]   EVANESCENT BLACK-HOLES [J].
CALLAN, CG ;
GIDDINGS, SB ;
HARVEY, JA ;
STROMINGER, A .
PHYSICAL REVIEW D, 1992, 45 (04) :R1005-R1009
[13]   GAUGE-INVARIANT FORMULATIONS OF LINEAL GRAVITIES [J].
CANGEMI, D ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :233-236
[14]   DYNAMICAL MOVING MIRRORS AND BLACK-HOLES [J].
CHUNG, TD ;
VERLINDE, H .
NUCLEAR PHYSICS B, 1994, 418 (1-2) :305-336
[15]   BOUNDARY DYNAMICS IN DILATON GRAVITY [J].
DAS, SR ;
MUKHERJI, S .
MODERN PHYSICS LETTERS A, 1994, 9 (33) :3105-3117
[16]   QUANTIZATION OF A THEORY OF 2D DILATON GRAVITY [J].
DEALWIS, SP .
PHYSICS LETTERS B, 1992, 289 (3-4) :278-282
[17]   Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime [J].
Engelhardt, Netta ;
Wall, Aron C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01)
[18]   Quantum corrections to holographic entanglement entropy [J].
Faulkner, Thomas ;
Lewkowycz, Aitor ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[19]   BLACK-HOLE THERMODYNAMICS AND INFORMATION LOSS IN 2 DIMENSIONS [J].
FIOLA, TM ;
PRESKILL, J ;
STROMINGER, A ;
TRIVEDI, SP .
PHYSICAL REVIEW D, 1994, 50 (06) :3987-4014
[20]   Dilaton gravity with a boundary: from unitarity to black hole evaporation [J].
Fitkevich, Maxim ;
Levkov, Dmitry ;
Zenkevich, Yegor .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)