A DSC and MLP based robust adaptive NN tracking control for underwater vehicle

被引:63
作者
Miao, Baobin [1 ]
Li, Tieshan [1 ]
Luo, Weilin [2 ]
机构
[1] Dalian Maritime Univ, Nav Coll, Dalian 116026, Peoples R China
[2] Fuzhou Univ, Coll Mech Engn & Automat, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous underwater vehicle; Neural network; Trajectory tracking; Minimal learning parameter; SMALL-GAIN APPROACH; FEEDBACK NONLINEAR-SYSTEMS; DYNAMIC SURFACE CONTROL; BACKSTEPPING CONTROL; TRAJECTORY TRACKING; NETWORK CONTROL; NEURAL-CONTROL; IDENTIFICATION;
D O I
10.1016/j.neucom.2012.12.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel adaptive neural network (NN) controller is proposed for trajectory tracking of autonomous underwater vehicle (AUV). By employing radial basic function neural network to account for modeling errors, then the adaptive NN tracking controller is constructed by combining the dynamic surface control (DSC) and the minimal learning parameter (MLP). The proposed controller guarantees that all the close-loop signals are uniform ultimate bounded (UUB) and that the tracking errors converge to a small neighborhood of the desired trajectory. Finally, simulation studies are given to illustrate the effectiveness of the proposed algorithm. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 189
页数:6
相关论文
共 38 条
[1]  
Alonge F, 2001, IEEE DECIS CONTR P, P4421, DOI 10.1109/CDC.2001.980898
[2]   Fuzzy-Approximation-Based Adaptive Control of Strict-Feedback Nonlinear Systems With Time Delays [J].
Chen, Bing ;
Liu, Xiaoping ;
Liu, Kefu ;
Lin, Chong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) :883-892
[3]   Novel adaptive neural control design for nonlinear MIMO time-delay systems [J].
Chen, Bing ;
Liu, Xiaoping ;
Liu, Kefu ;
Lin, Chong .
AUTOMATICA, 2009, 45 (06) :1554-1560
[4]   Direct adaptive fuzzy control of nonlinear strict-feedback systems [J].
Chen, Bing ;
Liu, Xiaoping ;
Liu, Kefu ;
Lin, Chong .
AUTOMATICA, 2009, 45 (06) :1530-1535
[5]   Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities [J].
Chen, Mou ;
Ge, Shuzhi Sam ;
How, Bernard Voon Ee .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (05) :796-812
[6]   NN-based output feedback adaptive variable structure control for a class of non-affine nonlinear systems: A nonseparation principle design [J].
Du, Hongbin ;
Chen, Xiaochuan .
NEUROCOMPUTING, 2009, 72 (7-9) :2009-2016
[7]  
Fossen T.I, 1998, GUIDANCE CONTROL OCE
[8]   Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems [J].
Gao, Y ;
Er, MJ .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (04) :462-477
[9]   Direct adaptive NN control of a class of nonlinear systems [J].
Ge, SS ;
Wang, C .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01) :214-221
[10]  
Hassanein O., 2011, 2011 5th International Conference on Automation, Robotics and Applications (ICARA 2011), P169, DOI 10.1109/ICARA.2011.6144876