A locking-free anisotropic nonconforming rectangular finite element approximation for the planar elasticity problem

被引:3
作者
Shi Dong-yang [1 ]
Wang Cai-xia [2 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[2] N China Univ Water Conservancy & Elect Power, Fac Math & Inform Sci, Zhengzhou 450011, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic mesh; locking-free; nonconforming finite element; optimal error estimate; complementary space;
D O I
10.1007/s11766-008-0102-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a new nonconforming anisotropic rectangular finite element approximation for the planar elasticity problem with pure displacement boundary condition. By use of the special properties of this element, and by introducing the complementary space and a series of novel techniques, the optimal error estimates of the energy norm and the L-2-norm are obtained. The restrictions of regularity assumption and quasi-uniform assumption or the inverse assumption on the meshes required in the conventional finite element methods analysis are to be got rid of and the applicable scope of the nonconforming finite elements is extended.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 18 条
[1]   The maximum angle condition for mixed and nonconforming elements:: Application to the Stokes equations [J].
Acosta, G ;
Duránn, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :18-36
[2]  
Apel T, 2001, NUMER MATH, V89, P193, DOI 10.1007/s002110000256
[3]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[4]  
Apel T, 1999, ANISOTROPIC FINITE E
[5]   LOCKING EFFECTS IN THE FINITE-ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS [J].
BABUSKA, I ;
SURI, M .
NUMERISCHE MATHEMATIK, 1992, 62 (04) :439-463
[6]  
Brenner S. C., 2007, Texts Appl. Math., V15
[7]  
BRENNER SC, 1992, MATH COMPUT, V59, P321, DOI 10.1090/S0025-5718-1992-1140646-2
[8]   Anisotropic interpolations with application to nonconforming elements [J].
Chen, SC ;
Zhao, YC ;
Shi, DY .
APPLIED NUMERICAL MATHEMATICS, 2004, 49 (02) :135-152
[9]   Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes [J].
Chen, SC ;
Shi, DY ;
Zhao, YC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :77-95
[10]  
Cheng XL, 1998, J COMPUT MATH, V16, P357