Volume growth and holonomy in nonnegative curvature

被引:2
作者
Tapp, K [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
volume growth; holonomy; nonnegative curvature; soul;
D O I
10.1090/S0002-9939-99-04893-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The volume growth of an open manifold of nonnegative sectional curvature is proven to be bounded above by the difference between the codimension of the soul and the maximal dimension of an orbit of the action of the normal holonomy group of the soul. Additionally, an example of a simply-connected soul with a non-compact normal holonomy group is constructed.
引用
收藏
页码:3035 / 3041
页数:7
相关论文
共 9 条
[1]   STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE [J].
CHEEGER, J ;
GROMOLL, D .
ANNALS OF MATHEMATICS, 1972, 96 (03) :413-443
[2]  
CHEEGER J, 1973, J DIFFER GEOM, V8
[3]   COMPARISON-THEOREMS AND HYPERSURFACES [J].
ESCHENBURG, JH .
MANUSCRIPTA MATHEMATICA, 1987, 59 (03) :295-323
[4]  
GUIJARRO L, IN PRESS T AM MATH S
[5]  
Kobayashi S., 1963, Foundations of Differential Geometry, VI
[6]  
PERELMAN G, 1994, J DIFFER GEOM, V40, P209
[7]  
Schroeder Viktor, 1990, ANN GLOB ANAL GEOM, V8, P159, DOI DOI 10.1007/BF00128001
[8]   SIGMA-FLAT MANIFOLDS AND RIEMANNIAN SUBMERSIONS [J].
STRAKE, M ;
WALSCHAP, G .
MANUSCRIPTA MATHEMATICA, 1989, 64 (02) :213-226
[9]  
YIM JW, 1990, J DIFFER GEOM, V32, P429