Overdetermined elliptic problems in topological disks

被引:3
作者
Mira, Pablo [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
关键词
CONSTANT MEAN-CURVATURE; HYPERSURFACES; CONJECTURE; SYMMETRY; PLANE;
D O I
10.1016/j.jde.2018.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a method, based on the Poincare-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:6994 / 7005
页数:12
相关论文
共 34 条
[1]  
Alexandrov A. D., 1956, AM MATH SOC T 2, V21, P341
[2]   REMARK ON AN APPLICATION OF PSEUDOANALYTIC FUNCTIONS [J].
BERS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (03) :486-496
[3]   An overdetermined problem with non-constant boundary condition [J].
Bianchini, Chiara ;
Henrot, Antoine ;
Salani, Paolo .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (02) :215-241
[4]   Serrin-type overdetermined problems: An alternative proof [J].
Brandolini, B. ;
Nitsch, C. ;
Salani, P. ;
Trombetti, C. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 190 (02) :267-280
[5]   Characterization of ellipsoids through an overdetermined boundary value problem of Monge-Ampere type [J].
Brandolini, B. ;
Gavitone, N. ;
Nitsch, C. ;
Trombetti, C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06) :828-841
[6]   Overdetermined anisotropic elliptic problems [J].
Cianchi, Andrea ;
Salani, Paolo .
MATHEMATISCHE ANNALEN, 2009, 345 (04) :859-881
[7]   SERRIN'S OVERDETERMINED PROBLEM AND CONSTANT MEAN CURVATURE SURFACES [J].
Del Pino, Manuel ;
Pacard, Frank ;
Wei, Juncheng .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (14) :2643-2722
[8]   Some fully nonlinear elliptic boundary value problems with ellipsoidal free boundaries [J].
Enache, Cristian ;
Sakaguchi, Shigeru .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) :1872-1879
[9]  
Espinar JM, 2015, ARXIV151102659
[10]   ON PARTIALLY AND GLOBALLY OVERDETERMINED PROBLEMS OF ELLIPTIC TYPE [J].
Farina, Alberto ;
Valdinoci, Enrico .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (06) :1699-1726