Quadratic estimates and functional calculi of perturbed Dirac operators

被引:81
作者
Axelsson, A [1 ]
Keith, S [1 ]
McIntosh, A [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
关键词
D O I
10.1007/s00222-005-0464-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove quadratic estimates for complex perturbations of Dirac-type operators, and thereby show that such operators have a bounded functional calculus. As an application we show that spectral projections of the Hodge-Dirac operator on compact manifolds depend analytically on L-infinity changes in the metric. We also recover a unified proof of many results in the Calderon program, including the Kato square root problem and the boundedness of the Cauchy operator on Lipschitz curves and surfaces.
引用
收藏
页码:455 / 497
页数:43
相关论文
共 32 条
  • [1] Albrecht D., 1996, P CTR MATH APPL AUST, V34, P77
  • [2] [Anonymous], REV MATEMATICA IBERO
  • [3] [Anonymous], 1998, ASTERISQUE
  • [4] The solution of the Kato square root problem for second order elliptic operators on Rn
    Auscher, P
    Hofmann, S
    Lacey, M
    McIntosh, A
    Tchamitchian, P
    [J]. ANNALS OF MATHEMATICS, 2002, 156 (02) : 633 - 654
  • [5] Extrapolation of Carleson measures and the analyticity of Kato's square-root operators
    Auscher, P
    Hofmann, S
    Lewis, JL
    Tchamitchian, P
    [J]. ACTA MATHEMATICA, 2001, 187 (02) : 161 - 190
  • [6] Auscher P, 1997, INDIANA U MATH J, V46, P659
  • [7] Auscher P, 1997, INDIANA U MATH J, V46, P375
  • [8] Auscher P, 1998, ASTERISQUE, pIII
  • [9] The Kato square root problem for higher order elliptic operators and systems on Rn
    Auscher, Pascal
    Hofmann, Steve
    McIntosh, Alan
    Tchamitchian, Philippe
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) : 361 - 385
  • [10] CAUCHY INTEGRALS ON LIPSCHITZ CURVES AND RELATED OPERATORS
    CALDERON, AP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (04) : 1324 - 1327