Quadratic estimates and functional calculi of perturbed Dirac operators

被引:83
作者
Axelsson, A [1 ]
Keith, S [1 ]
McIntosh, A [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
关键词
D O I
10.1007/s00222-005-0464-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove quadratic estimates for complex perturbations of Dirac-type operators, and thereby show that such operators have a bounded functional calculus. As an application we show that spectral projections of the Hodge-Dirac operator on compact manifolds depend analytically on L-infinity changes in the metric. We also recover a unified proof of many results in the Calderon program, including the Kato square root problem and the boundedness of the Cauchy operator on Lipschitz curves and surfaces.
引用
收藏
页码:455 / 497
页数:43
相关论文
共 32 条
[1]  
Albrecht D., 1996, P CTR MATH APPL AUST, V34, P77
[2]  
[Anonymous], REV MATEMATICA IBERO
[3]  
[Anonymous], 1998, ASTERISQUE
[4]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[5]   Extrapolation of Carleson measures and the analyticity of Kato's square-root operators [J].
Auscher, P ;
Hofmann, S ;
Lewis, JL ;
Tchamitchian, P .
ACTA MATHEMATICA, 2001, 187 (02) :161-190
[6]  
Auscher P, 1997, INDIANA U MATH J, V46, P659
[7]  
Auscher P, 1997, INDIANA U MATH J, V46, P375
[8]  
Auscher P, 1998, ASTERISQUE, pIII
[9]   The Kato square root problem for higher order elliptic operators and systems on Rn [J].
Auscher, Pascal ;
Hofmann, Steve ;
McIntosh, Alan ;
Tchamitchian, Philippe .
JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) :361-385
[10]   CAUCHY INTEGRALS ON LIPSCHITZ CURVES AND RELATED OPERATORS [J].
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (04) :1324-1327