Normal stress measurements in sheared non-Brownian suspensions

被引:43
|
作者
Garland, S. [1 ]
Gauthier, G. [1 ]
Martin, J. [1 ]
Morris, J. F. [2 ,3 ]
机构
[1] Univ Paris 11, CNRS UMR 7608, Lab FAST, F-91405 Orsay, France
[2] CUNY City Coll, Levich Inst, New York, NY 10031 USA
[3] CUNY City Coll, Dept Chem Engn, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
INDUCED SELF-DIFFUSION; CONCENTRATED SUSPENSIONS; PARTICLE MIGRATION; NONCOLLOIDAL SUSPENSIONS; SPHERICAL-PARTICLES; SURFACE-ROUGHNESS; DILUTE SUSPENSION; MICROSTRUCTURE; DYNAMICS; RHEOLOGY;
D O I
10.1122/1.4758001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Measurements in a cylindrical Taylor-Couette device of the shear-induced radial normal stress in a suspension of neutrally buoyant non-Brownian (noncolloidal) spheres immersed in a Newtonian viscous liquid are reported. The radial normal stress of the fluid phase was obtained by measurement of the grid pressure P-g, i.e., the liquid pressure measured behind a grid which restrained the particles from crossing. The radial component of the total stress of the suspension was obtained by measurement of the pressure, P-m, behind a membrane exposed to both phases. Pressure measurements, varying linearly with the shear rate, were obtained for shear rates low enough to insure a grid pressure below a particle size dependent capillary stress. Under these experimental conditions, the membrane pressure is shown to equal the second normal stress difference, N-2, of the suspension stress whereas the difference between the grid pressure and the total pressure, P-g - P-m, equals the radial normal stress of the particle phase, Sigma(p)(rr). The collected data show that Sigma(p)(rr) is about 1 order of magnitude higher than the second normal stress difference of the suspension. The Sigma(p)(rr) values obtained in this manner are independent of the particle size, and their ratio to the suspension shear stress increases quadratically with phi, in the range 0 < phi < 0.4. This finding, in agreement with the theoretical particle pressure prediction of Brady and Morris [J. Fluid Mech. 348, 103-139 (1997)] for small phi, supports the contention that the particle phase normal stress Sigma(p)(rr) is due to asymmetric pair interactions under dilute conditions, and may not require many-body effects. Moreover we show that the values of Sigma(p)(rr), normalized by the fluid shear stress, eta(f)|(gamma)over dot| with eta(f) the suspending fluid viscosity and |(gamma)over dot| the magnitude of the shear rate, are well-described by a simple analytic expression recently proposed for the particle pressure. (C) 2013 The Society of Rheology. [http://dx.doi.org/10.1122/1.4758001]
引用
收藏
页码:71 / 88
页数:18
相关论文
共 50 条
  • [31] Shear thinning and microstructures of attractive non-Brownian suspensions
    Liang, Yixuan
    Wang, Jinhe
    Lin, Yuan
    Pan, Dingyi
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [34] RHEOLOGICAL PROPERTIES OF NON-BROWNIAN SPHEROIDAL PARTICLE SUSPENSIONS
    RAO, BN
    TANG, L
    ALTAN, MC
    JOURNAL OF RHEOLOGY, 1994, 38 (05) : 1335 - 1351
  • [35] Dynamic viscosity of non-Brownian suspensions in poiseuille flow
    Rigord, P
    Charlaix, E
    Petit, L
    JOURNAL DE PHYSIQUE II, 1996, 6 (07): : 1091 - 1098
  • [36] Shear Flow of Non-Brownian Suspensions Close to Jamming
    Andreotti, Bruno
    Barrat, Jean-Louis
    Heussinger, Claus
    PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [37] On the shear thinning of non-Brownian suspensions: Friction or adhesion?
    Papadopoulou, Anastasia
    Gillissen, Jurriaan J.
    Wilson, Helen J.
    Tiwari, Manish K.
    Balabani, Stavroula
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2020, 281
  • [38] The role of friction in the yielding of adhesive non-Brownian suspensions
    Richards, J. A.
    Guy, B. M.
    Blanco, E.
    Hermes, M.
    Poy, G.
    Poon, W. C. K.
    JOURNAL OF RHEOLOGY, 2020, 64 (02) : 405 - 412
  • [39] Viscosity scaling in suspensions of non-Brownian rodlike particles
    Ralambotiana, T
    Blanc, R
    Chaouche, M
    PHYSICS OF FLUIDS, 1997, 9 (12) : 3588 - 3594
  • [40] Rheology of non-Brownian suspensions: a rough contact story
    Lemaire, Elisabeth
    Blanc, Frederic
    Claudet, Cyrille
    Gallier, Stany
    Lobry, Laurent
    Peters, Francois
    RHEOLOGICA ACTA, 2023, 62 (5-6) : 253 - 268