Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production

被引:81
|
作者
Sun, Shaodong [1 ]
Li, Jia [1 ]
Cui, Jie [1 ]
Gou, Xufeng [1 ]
Yang, Qing [1 ]
Jiang, Yihui [1 ]
Liang, Shuhua [1 ]
Yang, Zhimao [2 ]
机构
[1] Xian Univ Technol, Sch Mat Sci & Engn, Shaanxi Prov Key Lab Elect Mat & Infiltrat Techno, Xian 710048, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Sch Sci, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
Graphitic carbon nitride; K-doping; Exfoliation; Nanosheet; Photocatalytic hydrogen evolution; OXYGEN-DOPED G-C3N4; SOLAR HYDROGEN; NANOSHEETS; EVOLUTION; ABSORPTION; SYNTHESIZE; CATALYSTS; C3N4;
D O I
10.1016/j.ijhydene.2018.11.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Doping and exfoliation are effective strategies to improve the photocatalytic activity of bulk graphitic carbon nitride (g-C3N4). Therefore, it can be inferred that engineering element-doping and exfoliation into g-C3N4 would further enhance the photocatalytic performance. Herein, we demonstrated a KOH-assisted hydrothermal-reformed melamine strategy for achieving the simultaneous K-doping and exfoliation of g-C3N4. The as synthesized K-doped g-C3N4 ultrathin nanosheets displayed much enhanced photo catalytic hydrogen evolution rate (HER) of about 13.1 times higher than that of the bulk g-C3N4 under visible-light irradiation, achieving an apparent quantum efficiency of 6.98% at 420 nm. The improved photocatalytic HER can be attributed to the high surface area offering numerous photocatalytic active sites, enlarged conductive band edge optimizing photoreduction potential, and K-doping promoting charge generation and separation as well as the long life-time of photogenerated carriers. This work would provide a promising way to integrate co-doping and exfoliation into new g-C3N4-based materials. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 50 条
  • [21] Enhanced photocatalytic activity and optical response mechanism of porous graphitic carbon nitride (g-C3N4) nanosheets
    Zhang, Rui
    Zhang, Xianmin
    Liu, Saiwei
    Tong, Junwei
    Kong, Fan
    Sun, Naikun
    Han, Xiaoli
    Zhang, Yanlin
    MATERIALS RESEARCH BULLETIN, 2021, 140
  • [22] Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation
    Ding, Jianjun
    Sun, Xuxu
    Wang, Qi
    Li, Dong-sheng
    Li, Xiangyang
    Li, Xiaoxiao
    Chen, Lin
    Zhang, Xian
    Tian, Xingyou
    Ostrikov, Kostya
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [23] Solvothermal synthesis of carbon nitride (g-C3N4): bandgap engineering for improved photocatalytic performance
    Abdullahi, Mohammed Tajudeen
    Ali, Maryum
    Farooq, Wasif
    Khan, Majad
    Younas, Muhammad
    Tahir, Muhammad Nawaz
    SUSTAINABLE ENERGY & FUELS, 2025, 9 (04): : 1109 - 1119
  • [24] A gas bubble exfoliation method to prepare g-C3N4 nanosheets with enhanced photocatalytic activities
    Zhou, Jianxing
    Xue, Jinbo
    Pan, Qiliang
    Yang, Xuefeng
    Shen, Qianqian
    Ma, Tao
    Liu, Xuguang
    Jia, Husheng
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2019, 372 : 147 - 155
  • [25] Tuning of graphitic carbon nitride (g-C3N4) for photocatalysis: A critical review
    Wudil, Y. S.
    Ahmad, U. F.
    Gondal, M. A.
    Al-Osta, Mohammed A.
    Almohammedi, Abdullah
    Sa'id, R. S.
    Hrahsheh, F.
    Haruna, K.
    Mohamed, M. J. S.
    ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (03)
  • [26] Graphitic carbon nitride (g-C3N4): Futuristic material for rechargeable batteries
    Thomas, Susmi Anna
    Pallavolu, Mohan Reddy
    Khan, Mohammad Ehtisham
    Cherusseri, Jayesh
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [27] Hydrogen production via water splitting over graphitic carbon nitride (g-C3N4)-based photocatalysis
    Ismael, Mohammed
    PHYSICAL SCIENCES REVIEWS, 2021, : 1861 - 1899
  • [28] Different strategies to improve photocatalytic activity of graphitic carbon nitride (g-C3N4) semiconductor nanomaterials for hydrogen generation
    Mallick, Pravakar
    Sahoo, Shraban Kumar
    Satpathy, Santosh Kumar
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 406
  • [29] Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase
    Sano, Taizo
    Tsutsui, Sakiko
    Koike, Kazuhide
    Hirakawa, Tsutomu
    Teramoto, Yoshiyuki
    Negishi, Nobuaki
    Takeuchi, Koji
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (21) : 6489 - 6496
  • [30] Enhanced photocatalytic hydrogen production based on laminated MoS2/g-C3N4 photocatalysts
    Yuan, Hui
    Fang, Fenjian
    Dong, Jing
    Xia, Weiwei
    Zeng, Xianghua
    Shangguan, Wenfeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 641