Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production

被引:81
|
作者
Sun, Shaodong [1 ]
Li, Jia [1 ]
Cui, Jie [1 ]
Gou, Xufeng [1 ]
Yang, Qing [1 ]
Jiang, Yihui [1 ]
Liang, Shuhua [1 ]
Yang, Zhimao [2 ]
机构
[1] Xian Univ Technol, Sch Mat Sci & Engn, Shaanxi Prov Key Lab Elect Mat & Infiltrat Techno, Xian 710048, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Sch Sci, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
Graphitic carbon nitride; K-doping; Exfoliation; Nanosheet; Photocatalytic hydrogen evolution; OXYGEN-DOPED G-C3N4; SOLAR HYDROGEN; NANOSHEETS; EVOLUTION; ABSORPTION; SYNTHESIZE; CATALYSTS; C3N4;
D O I
10.1016/j.ijhydene.2018.11.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Doping and exfoliation are effective strategies to improve the photocatalytic activity of bulk graphitic carbon nitride (g-C3N4). Therefore, it can be inferred that engineering element-doping and exfoliation into g-C3N4 would further enhance the photocatalytic performance. Herein, we demonstrated a KOH-assisted hydrothermal-reformed melamine strategy for achieving the simultaneous K-doping and exfoliation of g-C3N4. The as synthesized K-doped g-C3N4 ultrathin nanosheets displayed much enhanced photo catalytic hydrogen evolution rate (HER) of about 13.1 times higher than that of the bulk g-C3N4 under visible-light irradiation, achieving an apparent quantum efficiency of 6.98% at 420 nm. The improved photocatalytic HER can be attributed to the high surface area offering numerous photocatalytic active sites, enlarged conductive band edge optimizing photoreduction potential, and K-doping promoting charge generation and separation as well as the long life-time of photogenerated carriers. This work would provide a promising way to integrate co-doping and exfoliation into new g-C3N4-based materials. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 50 条
  • [1] CaH2-assisted structural engineering of porous defective graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen evolution
    Tang, Lina
    Chen, Zhou
    Chen, Gui
    Zuo, Fan
    Hua, Bin
    Zhang, Lizhong
    Li, Jianhui
    Sun, Yifei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) : 18937 - 18945
  • [2] Thermal Exfoliation and Phosphorus Doping in Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Chen, Lu
    Zhang, Linzhu
    Xia, Yuzhou
    Huang, Renkun
    Liang, Ruowen
    Yan, Guiyang
    Wang, Xuxu
    MOLECULES, 2024, 29 (15):
  • [3] Engineering of g-C3N4 for Photocatalytic Hydrogen Production: A Review
    Yan, Yachao
    Meng, Qing
    Tian, Long
    Cai, Yulong
    Zhang, Yujuan
    Chen, Yingzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [4] Graphitic Carbon Nitride (g-C3N4) in Photocatalytic Hydrogen Production: Critical Overview and Recent Advances
    Kyriakos, Periklis
    Hristoforou, Evangelos
    Belessiotis, George V.
    ENERGIES, 2024, 17 (13)
  • [5] Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution
    Huang, Jiangnan
    Wang, Hongjuan
    Yu, Hao
    Zhang, Qiao
    Cao, Yonghai
    Peng, Feng
    CHEMSUSCHEM, 2020, 13 (18) : 5041 - 5049
  • [6] Facile fabrication of graphitic carbon nitride, (g-C3N4) thin film
    Safaei, Javad
    Mohamed, Nurul Aida
    Noh, Mohamad Firdaus Mohamad
    Soh, Mohd Fairuz
    Riza, Muhammad Arif
    Mustakim, Nurul Syafiqah Mohamed
    Ludin, Norasikin Ahmad
    Ibrahim, Mohd Adib
    Isahak, Wan Nor Roslam Wan
    Teridi, Mohd Asri Mat
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 769 : 130 - 135
  • [7] Photocatalytic properties of graphitic carbon nitrides (g-C3N4) for sustainable green hydrogen production: Recent advancement
    Al-Ahmed, Amir
    FUEL, 2022, 316
  • [8] Improvement of the photocatalytic hydrogen production activity of g-C3N4 by doping selenides as cocatalysts
    Yang, Dou-Dou
    Sun, Xiao-Jun
    Dong, Hong
    Zhang, Xin
    Tang, Hong-Liang
    Sheng, Jing-Li
    Wei, Jin-Zhi
    Zhang, Feng-Ming
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 85 : 76 - 82
  • [9] Graphitic Carbon Nitride (g-C3N4) Nanosheets/Graphene Composites: In Situ Synthesis and Enhanced Photocatalytic Performance
    Zhu, Kaixing
    Du, Yanyan
    Liu, Jing
    Fan, Xiaoyan
    Duan, Zhenya
    Song, Guanying
    Meng, Alan
    Li, Zhenjiang
    Li, Qingdang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (04) : 2515 - 2519
  • [10] Engineering doping and defect in graphitic carbon nitride by one-pot method for enhanced photocatalytic hydrogen evolution
    Chang, Xinye
    Fan, Huiqing
    Zhu, Shuwen
    Lei, Lin
    Wu, Xiaobo
    Feng, Cheng
    Wang, Weijia
    Ma, Longtao
    CERAMICS INTERNATIONAL, 2023, 49 (04) : 6729 - 6738