Arithmetic matroids, the Tutte polynomial and toric arrangements

被引:43
作者
D'Adderio, Michele [2 ]
Moci, Luca [1 ]
机构
[1] Univ Paris 07, INdAM, F-75013 Paris, France
[2] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
关键词
Tutte polynomial; Arithmetic matroids; Tonic arrangements; Combinatorial interpretation; COMBINATORICS; GEOMETRY; EQUATIONS; SYSTEMS; SPLINES;
D O I
10.1016/j.aim.2012.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of an arithmetic matroid whose main example is a list of elements of a finitely generated abelian group. In particular, we study the representability of its dual, providing an extension of the Gale duality to this setting. Guided by the geometry of generalized tone arrangements, we provide a combinatorial interpretation of the associated arithmetic Tutte polynomial, which can be seen as a generalization of Crapo's formula for the classical Tutte polynomial. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:335 / 367
页数:33
相关论文
共 36 条
[1]   COMBINATORICS AND GEOMETRY OF POWER IDEALS [J].
Ardila, Federico ;
Postnikov, Alexander .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) :4357-4384
[2]  
Branden P., ARXIV12073629
[3]  
Brenti F., 1994, Contemp. Math., V178, P71
[4]  
Concini CD, 2011, UNIVERSITEXT, P1
[5]  
Crapo H.H., 1969, Aequ. Math., V3, P211, DOI [10.1007/bf01817442, DOI 10.1007/BF01817442]
[6]   Graph colorings, flows and arithmetic Tutte polynomial [J].
D'Adderio, Michele ;
Moci, Luca .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (01) :11-27
[7]   Ehrhart polynomial and arithmetic Tutte polynomial [J].
D'Adderio, Michele ;
Moci, Luca .
EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (07) :1479-1483
[8]  
d'Antonio G., ARXIV11014111V2
[9]   ON THE SOLUTION OF CERTAIN SYSTEMS OF PARTIAL DIFFERENCE-EQUATIONS AND LINEAR-DEPENDENCE OF TRANSLATES OF BOX SPLINES [J].
DAHMEN, W ;
MICCHELLI, CA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) :305-320
[10]  
DAHMEN W, 1988, T AM MATH SOC, V308, P509