Micromachined cryogenic cooler for cooling electronic devices down to 30 K

被引:8
作者
Cao, H. S. [1 ]
Holland, H. J. [1 ]
Vermeer, C. H. [1 ]
Vanapalli, S. [1 ]
Lerou, P. P. P. M. [2 ]
Blom, M. [3 ]
ter Brake, H. J. M. [1 ]
机构
[1] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[2] Kryoz Technol BV, NL-7521 PV Enschede, Netherlands
[3] Micronit Microfuid BV, NL-7521 PV Enschede, Netherlands
关键词
JOULE-THOMSON REFRIGERATOR; HEAT-EXCHANGER; SUPERCONDUCTIVITY; OPTIMIZATION; DETECTORS; DESIGN; MW;
D O I
10.1088/0960-1317/23/2/025014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cryogenic temperatures are required for improving the performance of electronic devices and for operating superconducting sensors and circuits. The broad implementation of cooling these devices has long been constrained by the availability of reliable and low cost cryocoolers. After the successful development of single-stage micromachined coolers able to cool to 100 K, we now present a micromachined two-stage microcooler that cools down to 30 K from an ambient temperature of 295 K. The first stage of the microcooler operates at about 94 K with nitrogen gas and pre-cools the second stage operating with hydrogen gas. The microcooler is made from just three glass wafers and operates with modest high-pressure gases and without moving parts facilitating high yield fabrication of these microcoolers. We have successfully cooled a YBCO film through its superconducting transition state to demonstrate a load on the microcooler at cryogenic temperatures. This work could expedite the application of superconducting and electronic sensors and detectors among others in medical and space applications.
引用
收藏
页数:6
相关论文
共 25 条
[1]  
Callen HB., 1985, Thermodynamics and an Introduction to Thermostatistics
[2]   Design and optimization of a two-stage 28 K Joule-Thomson microcooler [J].
Cao, H. S. ;
Mudaliar, A. V. ;
Derking, J. H. ;
Lerou, P. P. P. M. ;
Holland, H. J. ;
Zalewski, D. R. ;
Vanapalli, S. ;
ter Brake, H. J. M. .
CRYOGENICS, 2012, 52 (01) :51-57
[3]  
CHOROWSKI M, 1994, ADV CRYOG ENG, V39, P1475
[4]   Micromachined Joule-Thomson cold stages operating in the temperature range 80-250 K [J].
Derking, J. H. ;
Holland, H. J. ;
Lerou, P. P. P. M. ;
Tirolien, T. ;
ter Brake, H. J. M. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (04) :1200-1207
[5]   A miniature Joule-Thomson cooler for optical detectors in space [J].
Derking, J. H. ;
Holland, H. J. ;
Tirolien, T. ;
ter Brake, H. J. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (04)
[6]   PERFORMANCE-CHARACTERISTICS OF A LOW-FLOW RATE 25 MW, LN2 JOULE-THOMSON REFRIGERATOR FABRICATED BY PHOTOLITHOGRAPHIC MEANS [J].
GARVEY, S ;
LOGAN, S ;
ROWE, R ;
LITTLE, WA .
APPLIED PHYSICS LETTERS, 1983, 42 (12) :1048-1050
[7]   Miniature 10-150 mW Linde-Hampson cooler with glass-tube heat exchanger operating with nitrogen [J].
Holland, HJ ;
Burger, JF ;
Boersma, N ;
ter Brake, HJM ;
Rogalla, H .
CRYOGENICS, 1998, 38 (04) :407-410
[8]   Characterization of micromachined cryogenic coolers [J].
Lerou, P. P. P. M. ;
ter Brake, H. J. M. ;
Burger, J. F. ;
Holland, H. J. ;
Rogalla, H. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (10) :1956-1960
[9]   Fabrication of a micro cryogenic cold stage using MEMS-technology [J].
Lerou, P. P. P. M. ;
Venhorst, G. C. F. ;
Berends, C. F. ;
Veenstra, T. T. ;
Blom, M. ;
Burger, J. F. ;
ter Brake, H. J. M. ;
Rogalla, H. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (10) :1919-1925
[10]   Insight into clogging of micromachined cryogenic coolers [J].
Lerou, P. P. P. M. ;
ter Brake, H. J. M. ;
Holland, H. J. ;
Burger, J. F. ;
Rogalla, H. .
APPLIED PHYSICS LETTERS, 2007, 90 (06)