Transition metal diboride-silicon carbide-boron carbide ceramics with super-high hardness and strength

被引:18
作者
Neuman, Eric W. [1 ,2 ,3 ]
Hilmas, Gregory E. [1 ]
Fahrenholtz, William G. [1 ]
机构
[1] Missouri Univ Sci & Technol, Mat Sci & Engn Dept, Rolla, MO 65409 USA
[2] POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs Albuquerque, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Hot; -pressing; Borides; Carbides; Mechanical properties; ZIRCONIUM DIBORIDE; MECHANICAL-PROPERTIES; MICROSTRUCTURE; TEMPERATURE; COMPOSITES; DENSIFICATION;
D O I
10.1016/j.jeurceramsoc.2022.08.019
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three phase boride and carbide ceramics were found to have remarkably high hardness values. Six different compositions were produced by hot pressing ternary mixtures of Group IVB transition metal diborides, SiC, and B4C. Vickers' hardness at 9.8 N was-31 GPa for a ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C, increasing to-33 GPa for a ceramic containing equal volume fractions of the three constituents. Hardness values for the ceramics containing ZrB2 and HfB2 were-30% and 20% lower than the corresponding TiB2 containing ceramics, respectively. Hardness values also increased as indentation load decreased due to the indentation size effect. At an indentation load of 0.49 N, the hardness of the previously reported ceramic con-taining equal volume fractions of TiB2, SiC and B4C was-54 GPa, the highest of the ceramics in the present study and higher than the hardness values reported for so-called "superhard" ceramics at comparable indentation loads. The previously reported ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C also displayed the highest flexural strength of-1.3 GPa and fracture toughness of 5.7 MPa center dot m1/2, decreasing to-0.9 GPa and 4.5 MPa center dot m1/2 for a ceramic containing equal volume fractions of the constituents.
引用
收藏
页码:6795 / 6801
页数:7
相关论文
共 42 条
[21]   Processing, microstructure, and mechanical properties of zirconium diboride-boron carbide ceramics [J].
Neuman, Eric W. ;
Hilmas, Gregory E. ;
Fahrenholtz, William G. .
CERAMICS INTERNATIONAL, 2017, 43 (09) :6942-6948
[22]   Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics [J].
Neuman, Eric W. ;
Hilmas, Gregory E. ;
Fahrenholtz, William G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 670 :196-204
[23]  
Riedel R., 2000, Handbook of ceramic hard materials
[24]  
Sciti D., 2014, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, V9781118700785, P112, DOI DOI 10.1002/9781118700853.CH6
[25]  
Shaffer P T B, 1991, Ceramics and Glasses: Engineered Materials Handbook, V4, P787
[26]   Disclosing small scale length properties in core-shell structured B4C-TiB2 composites [J].
Silvestroni, Laura ;
Failla, Simone ;
Gilli, Nicola ;
Melandri, Cesare ;
Savac, Umut ;
Turan, Servet ;
Sciti, Diletta .
MATERIALS & DESIGN, 2021, 197
[27]   The Analysis of Resistance to Brittle Cracking of Tungsten Doped TiB2 Coatings Obtained by Magnetron Sputtering [J].
Smolik, Jerzy ;
Kacprzynska-Golacka, Joanna ;
Sowa, Sylwia ;
Piasek, Artur .
COATINGS, 2020, 10 (09)
[28]  
Taylor R.E., 1977, Tech. Rep., V13, P898
[29]  
Telle R., 2000, HDB CERAMIC HARD MAT, V1, P802, DOI DOI 10.1002/9783527618217.CH22
[30]  
Thevenot F., 1990, Journal of the European Ceramic Society, V6, P205, DOI 10.1016/0955-2219(90)90048-K