The obstacle problem for nonlinear noncoercive elliptic equations with <mml:msup>L1</mml:msup>-data

被引:0
作者
Zheng, Jun [1 ]
Tavares, Leandro S. [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Sichuan, Peoples R China
[2] Univ Fed Cariri, Ctr Ciencias & Tecnol, Juazeiro Do Norte, Brazil
来源
BOUNDARY VALUE PROBLEMS | 2019年
关键词
Obstacle problem; Noncoercive elliptic equation; L-1-data; Entropy solution; UNILATERAL PROBLEMS; EXISTENCE;
D O I
10.1186/s13661-019-1168-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the obstacle problem governed by nonlinear noncoercive elliptic equations with L1-data. We prove the existence of an entropy solution and show its continuous dependence on the L1-data in W1,q() with q>1.
引用
收藏
页数:15
相关论文
共 22 条
  • [1] Alvino A., 1998, Atti Semin. Mat. Fis. Univ., V46, P381
  • [2] [Anonymous], 1995, ANN SCUOLA NORM-SCI
  • [3] [Anonymous], RIC MAT
  • [4] Existence results for nonlinear elliptic equations with degenerate coercivity
    Angelo Alvino
    Lucio Boccardo
    Vincenzo Ferone
    Luigi Orsina
    Guido Trombetti
    [J]. Annali di Matematica Pura ed Applicata, 2003, 182 (1) : 53 - 79
  • [5] Boccardo L, 1999, J CONVEX ANAL, V6, P195
  • [6] BOCCARDO L, 1990, CR ACAD SCI I-MATH, V311, P617
  • [7] Boccardo L., 1998, Atti Semin Mat Fis Univ Modena Reggio Emilia, V46, P51
  • [8] Boccardo L., 1996, Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994). Pitman Res. Notes Math. Ser., V350, P43
  • [9] On the A-obstacle problem and the Hausdorff measure of its free boundary
    Challal, S.
    Lyaghfouri, A.
    Rodrigues, J. F.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (01) : 113 - 165
  • [10] Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators
    Cho, Yumi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (10) : 6152 - 6190