Image-based crystal plasticity FE framework for microstructure dependent properties of Ti-6Al-4V alloys

被引:56
作者
Thomas, J. [3 ]
Groeber, M. [2 ]
Ghosh, S. [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] AFRL RXLM, Wright Patterson AFB, OH 45433 USA
[3] Ohio State Univ, Columbus, OH 43210 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2012年 / 553卷
基金
美国国家科学基金会;
关键词
Crystal plasticity FEM; Virtual microstructure; Creep; Sensitivity; Microstructure-response; Titanium alloys; Polycrystalline; ROOM-TEMPERATURE CREEP; DEFORMATION; MECHANISMS; ELEMENT; TI-6AL-2SN-4ZR-2MO; POLYCRYSTALS; BEHAVIOR; TENSILE; MODEL; SIZE;
D O I
10.1016/j.msea.2012.06.006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, micromechanical crystal plasticity finite element method (CPFEM) simulations of the response of virtual/synthetic alpha-beta Ti-6V-4Al polycrystalline microstructures are carried out to quantify the effect of the material's microstructure on mechanical properties. The image-based CPFEM analysis begins with characterization of the morphological and crystallographic features of the material at the scale of the polycrystalline microstructure. Statistically equivalent representative 3D polycrystalline microstructures are generated from the microstructural characterization data and subsequently discretized into finite element meshes for the CPFEM analysis. Using a validated computational analysis tool, sensitivity studies are performed to develop a quantitative understanding of how individual microstructural parameters affect the overall mechanical response properties of the alloy. Functional forms of the dependencies are proposed that connect the material's microstructural features to properties like yield strength response, constant strain rate response and creep response. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 175
页数:12
相关论文
共 42 条
[1]  
Allison J.E., 2006, J MATER, P25
[2]   Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys [J].
Anahid, Masoud ;
Samal, Mahendra K. ;
Ghosh, Somnath .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (10) :2157-2176
[3]  
[Anonymous], 2003, MESHSIM US GUID
[4]  
[Anonymous], 2009, MSC MARC MENT
[5]   Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium [J].
Balasubramanian, S ;
Anand, L .
ACTA MATERIALIA, 2002, 50 (01) :133-148
[6]   3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis [J].
Bhandari, Y. ;
Sarkar, S. ;
Groeber, M. ;
Uchic, M. D. ;
Dimiduk, D. M. ;
Ghosh, S. .
COMPUTATIONAL MATERIALS SCIENCE, 2007, 41 (02) :222-235
[7]  
Collins P.C., 2004, A combinatorial approach to the development of compositionmicrostructure- property relationships in titanium alloys using directed laser deposition
[8]   Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242 [J].
Deka, Dhyanjyoti ;
Joseph, Deepu S. ;
Ghosh, Somnath ;
Mills, Michael J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (05) :1371-1388
[9]  
Edwards A. W. F., 1972, LIKELIHOOD
[10]  
Ghosh S, 2011, COMPUTATIONAL METHODS FOR MICROSTRUCTURE-PROPERTY RELATIONSHIPS, P497, DOI 10.1007/978-1-4419-0643-4_14