Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen during its sudden release into a tube

被引:31
作者
Gong, Liang [1 ]
Li, Zhisheng [1 ]
Jin, Kaiyan [1 ]
Gao, Yunji [1 ]
Duan, Qiangling [2 ]
Zhang, Yuchun [1 ]
Sun, Jinhua [2 ]
机构
[1] Southwest Jiaotong Univ, Dept Fire Protect Engn, Chengdu 610031, Sichuan, Peoples R China
[2] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
High-pressure hydrogen release; Spontaneous ignition; Mechanism; Shock wave; CFD; SPONTANEOUS SELF-IGNITION; FLAME PROPAGATION; RUPTURE RATE; GAS; JET; LES; DISCHARGE; ADDITIONS; DYNAMICS; GEOMETRY;
D O I
10.1016/j.ssci.2020.104807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hydrogen is regarded as the promising energy carrier in the 21st century and high-pressure storage is selected as the best option. However, spontaneous ignition would be induced if high-pressure hydrogen is suddenly released. Three cases were numerically conducted to gain an insight into the mechanism of the spontaneous ignition and to validate against our previous experimental results. Result show that a hemispherical shock wave is first produced. Then it is reflected as reflected shock wave after hitting the tube wall and interacts with other reflected shock waves to form the Mach disk, shock triple point and a barrel shock. The height of the Mach disk gradually decreases and finally it disappears. Meanwhile, the shape of hydrogen jet changes from a forward convex shape to a backward concave shape and hydrogen/air mixture layer is formed near the tube wall and the center of the tube. The temperature of the shock-affected region gradually increases and its area thickens. After maintenance of high temperature for a period of time, spontaneous ignition firstly occurs at the tube boundary. Present numerical results not only reproduce the ignition conditions but also the ignition positions indicating that the model is an effective tool for hydrogen safety engineering.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Spontaneous ignition of hydrogen leaks: A review of postulated mechanisms [J].
Astbury, G. R. ;
Hawksworth, S. J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (13) :2178-2185
[2]  
Baratov A.N., 1990, Fire and Explosion Hazard of Substances and Materials and Tools for Their Quenching
[3]   Pressure limit of hydrogen spontaneous ignition in a T-shaped channel [J].
Bragin, M. V. ;
Makarov, D. V. ;
Molkov, V. V. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (19) :8039-8052
[4]   Physics of spontaneous ignition of high-pressure hydrogen release and transition to jet fire [J].
Bragin, M. V. ;
Molkov, V. V. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) :2589-2596
[5]   LES of high pressure hydrogen jet fire [J].
Brennan, S. L. ;
Makarov, D. V. ;
Molkov, V. .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2009, 22 (03) :353-359
[6]   Spontaneous ignition of pressurized releases of hydrogen and natural gas into air [J].
Dryer, Frederick L. ;
Chaos, Marcos ;
Zhao, Zhenwei ;
Stein, Jeffrey N. ;
Alpert, Jeffrey Y. ;
Homer, Christopher J. .
COMBUSTION SCIENCE AND TECHNOLOGY, 2007, 179 (04) :663-694
[7]  
Duan Q., 2017, EXPT STUDY SPONTANEO, V49
[8]   Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section [J].
Duan, Qiangling ;
Xiao, Huahua ;
Gao, Wei ;
Gong, Liang ;
Sun, Jinhua .
JOURNAL OF HAZARDOUS MATERIALS, 2016, 320 :18-26
[9]   The influence of diaphragm rupture rate on spontaneous self-ignition of pressurized hydrogen: Experimental investigation [J].
Golovastov, Sergey ;
Bocharnikov, Vladimir .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (14) :10956-10962
[10]   Experimental investigation of influence of methane additions on spontaneous self-ignition of pulsed jet of hydrogen [J].
Golovastov, Sergey V. ;
Bocharnikov, Vladimir M. ;
Samoilova, Anastasiia A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (30) :13322-13328