Mechanically Reinforced Localized Structure Design to Stabilize Solid-Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO2Nanotubes

被引:54
作者
Ge, Mingzheng [1 ,2 ]
Tang, Yuxin [3 ]
Malyi, Oleksandr I. [4 ]
Zhang, Yanyan [4 ]
Zhu, Zhiqiang [4 ]
Lv, Zhisheng [4 ]
Ge, Xiang [4 ]
Xia, Huarong [4 ]
Huang, Jianying [1 ]
Lai, Yuekun [1 ]
Chen, Xiaodong [4 ]
机构
[1] Fuzhou Univ, Coll Chem Engn, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350116, Peoples R China
[2] Nantong Univ, Sch Text & Clothing, Natl & Local Joint Engn Res Ctr Tech Fiber Compos, Nantong 226019, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Macau 999078, Peoples R China
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices iFLEX, 50 Nanyang Ave, Singapore 639798, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
lithium-ion batteries; silicon anodes; mechanical strains; minimizing thickness changes; solid-electrolyte interfaces; LITHIUM-ION BATTERIES; SILICON MICROPARTICLE ANODES; INTERPHASE SEI; ELECTROCHEMICAL PERFORMANCE; TITANATE NANOTUBES; NEGATIVE-ELECTRODE; CARBON SHELL; LOW-COST; METAL; PRELITHIATION;
D O I
10.1002/smll.202002094
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon anode with extremely high theoretical specific capacity (approximate to 4200 mAh g(-1)), experiences huge volume changes during Li-ion insertion and extraction, causing mechanical fracture of Si particles and the growth of a solid-electrolyte interface (SEI), which results in a rapid capacity fading of Si electrodes. Herein, a mechanically reinforced localized structure is designed for carbon-coated Si nanoparticles (C@Si) via elongated TiO(2)nanotubes networks toward stabilizing Si electrode via alleviating mechanical strain and stabilizing the SEI layer. Benefited from the rational localized structure design, the carbon-coated Si nanoparticles/TiO(2)nanotubes composited electrode (C@Si/TiNT) exhibits an ideal electrode thickness swelling, which is lower than 1% after the first cycle and increases to about 6.6% even after 1600 cycles. While for traditional C@Si/carbon nanotube composited electrode, the initial swelling ratio is about 16.7% and reaches approximate to 190% after 1600 cycles. As a result, the C@Si/TiNT electrode exhibits an outstanding capacity of 1510 mAh g(-1)at 0.1 A g(-1)with high rate capability and long-time cycling performance with 95% capacity retention after 1600 cycles. The rational design on mechanically reinforced localized structure for silicon electrode will provide a versatile platform to solve the current bottlenecks for other alloyed-type electrode materials with large volume expansion toward practical applications.
引用
收藏
页数:10
相关论文
共 128 条
[51]   Leveraging Titanium to Enable Silicon Anodes in Lithium-Ion Batteries [J].
Lee, Pui-Kit ;
Tahmasebi, Mohammad H. ;
Ran, Sijia ;
Boles, Steven T. ;
Yu, Denis Y. W. .
SMALL, 2018, 14 (41)
[52]  
Lee SW, 2010, NAT NANOTECHNOL, V5, P531, DOI [10.1038/nnano.2010.116, 10.1038/NNANO.2010.116]
[53]   A Facile Strategy to Construct Silver-Modified, ZnO-Incorporated and Carbon-Coated Silicon/Porous-Carbon Nanofibers with Enhanced Lithium Storage [J].
Li, Jiaxin ;
Li, Zebiao ;
Huang, Weijian ;
Chen, Lan ;
Lv, Fucong ;
Zou, Mingzhong ;
Qian, Feng ;
Huang, Zhigao ;
Lu, Jian ;
Li, Yangyang .
SMALL, 2019, 15 (18)
[54]   Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density [J].
Li, Jun-Tao ;
Wu, Zhan-Yu ;
Lu, Yan-Qiu ;
Zhou, Yao ;
Huang, Qi-Sen ;
Huang, Ling ;
Sun, Shi-Gang .
ADVANCED ENERGY MATERIALS, 2017, 7 (24)
[55]   Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling [J].
Li, Xiaolin ;
Yan, Pengfei ;
Xiao, Xingcheng ;
Woo, Jae Ha ;
Wang, Chongmin ;
Liu, Jun ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (06) :1427-1434
[56]   Watermelon-Like Structured SiOx-TiO2@C Nanocomposite as a High-Performance Lithium-Ion Battery Anode [J].
Li, Zhaolin ;
Zhao, Hailei ;
Lv, Pengpeng ;
Zhang, Zijia ;
Zhang, Yang ;
Du, Zhihong ;
Teng, Yongqiang ;
Zhao, Lina ;
Zhu, Zhiming .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (31)
[57]   Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries [J].
Lin, Liangdong ;
Xu, Xuena ;
Chu, Chenxiao ;
Majeed, Muhammad K. ;
Yang, Jian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (45) :14063-14066
[58]   Evolution of Solid Electrolyte Interface on TiO2 Electrodes in an Aqueous Li-Ion Battery Studied Using Scanning Electrochemical Microscopy [J].
Liu, Dongqing ;
Yu, Qipeng ;
Liu, Shuai ;
Qian, Kun ;
Wang, Shuwei ;
Sun, Wei ;
Yang, Xiao-Qing ;
Kang, Feiyu ;
Li, Baohua .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (20) :12797-12806
[59]   Self-Assembly of Silicon@Oxidized Mesocarbon Microbeads Encapsulated in Carbon as Anode Material for Lithium-Ion Batteries [J].
Liu, Huitian ;
Shan, Zhongqiang ;
Huang, Wenlong ;
Wang, Dongdong ;
Lin, Zejing ;
Cao, Zongjie ;
Chen, Peng ;
Meng, Shuxian ;
Chen, Li .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (05) :4715-4725
[60]   Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries [J].
Liu, Jun ;
Kopold, Peter ;
van Aken, Peter A. ;
Maier, Joachim ;
Yu, Yan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (33) :9632-9636