Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators

被引:274
作者
Chen, X. Z. [1 ]
Zarzuela, R. [2 ]
Zhang, J. [3 ,4 ]
Song, C. [1 ]
Zhou, X. F. [1 ]
Shi, G. Y. [1 ]
Li, F. [1 ]
Zhou, H. A. [5 ,6 ]
Jiang, W. J. [5 ,6 ]
Pan, F. [1 ]
Tserkovnyak, Y. [2 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, MOE, Key Lab Adv Mat, Beijing 100084, Peoples R China
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Hubei, Peoples R China
[5] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
AUGMENTED-WAVE METHOD; SPIN;
D O I
10.1103/PhysRevLett.120.207204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the current-induced switching of the Neel order in NiO(001)/Pt heterostractures, which is manifested electrically via the spin Hall magnetoresistance. Significant reversible changes in the longitudinal and transverse resistances are found at room temperature for a current threshold lying in the range of 10(7) A/cm(2). The order-parameter switching is ascribed to the antiferromagnetic dynamics triggered by the (current-induced) antidamping torque, which orients the Neel order towards the direction of the writing current. This is in stark contrast to the case of antiferromagnets such as Mn2Au and CuMnAs, where fieldlike torques induced by the Edelstein effect drive the Neel switching, therefore resulting in an orthogonal alignment between the Neel order and the writing current. Our findings can be readily generalized to other biaxial antiferromagnets, providing broad opportunities for all-electrical writing and readout in antiferromagnetic spintronics.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
Avci CO, 2017, NAT MATER, V16, P309, DOI [10.1038/nmat4812, 10.1038/NMAT4812]
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Magnetic anisotropy of transition-metal dimers: Density functional calculations [J].
Blonski, Piotr ;
Hafner, Juergen .
PHYSICAL REVIEW B, 2009, 79 (22)
[4]   Fe Spin Reorientation across the Metamagnetic Transition in Strained FeRh Thin Films [J].
Bordel, C. ;
Juraszek, J. ;
Cooke, David W. ;
Baldasseroni, C. ;
Mankovsky, S. ;
Minar, J. ;
Ebert, H. ;
Moyerman, S. ;
Fullerton, E. E. ;
Hellman, F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (11)
[5]   PRESENT STATUS OF TEMPERATURE DEPENDENCE OF MAGNETOCRYSTALLINE ANISOTROPY AND L(L+1)/2 POWER LAW [J].
CALLEN, HB ;
CALLEN, E .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1966, 27 (08) :1271-&
[6]   MAGNETIC-ORDERING AND EXCHANGE EFFECTS IN THE ANTI-FERROMAGNETIC SOLID-SOLUTIONS MNXNI1-XO [J].
CHEETHAM, AK ;
HOPE, DAO .
PHYSICAL REVIEW B, 1983, 27 (11) :6964-6967
[7]   Tunneling anisotropic magnetoresistance driven by magnetic phase transition [J].
Chen, X. Z. ;
Feng, J. F. ;
Wang, Z. C. ;
Zhang, J. ;
Zhong, X. Y. ;
Song, C. ;
Jin, L. ;
Zhang, B. ;
Li, F. ;
Jiang, M. ;
Tan, Y. Z. ;
Zhou, X. J. ;
Shi, G. Y. ;
Zhou, X. F. ;
Han, X. D. ;
Mao, S. C. ;
Chen, Y. H. ;
Han, X. F. ;
Pan, F. .
NATURE COMMUNICATIONS, 2017, 8
[8]   Theory of spin Hall magnetoresistance [J].
Chen, Yan-Ting ;
Takahashi, Saburo ;
Nakayama, Hiroyasu ;
Althammer, Matthias ;
Goennenwein, Sebastian T. B. ;
Saitoh, Eiji ;
Bauer, Gerrit E. W. .
PHYSICAL REVIEW B, 2013, 87 (14)
[9]   Terahertz Antiferromagnetic Spin Hall Nano-Oscillator [J].
Cheng, Ran ;
Xiao, Di ;
Brataas, Arne .
PHYSICAL REVIEW LETTERS, 2016, 116 (20)
[10]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509