Partial regularity for polyconvex functionals depending on the Hessian determinant

被引:2
作者
Carozza, Menita [1 ]
Leone, Chiara [2 ]
di Napoli, Antonia Passarelli [2 ]
Verde, Anna [2 ]
机构
[1] Univ Sannio, Dipartimento Pe Me Is, I-82100 Benevento, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
QUASI-CONVEX INTEGRALS; VARIATIONAL INTEGRALS; MINIMIZERS; SEMICONTINUITY; THEOREM; ENERGY;
D O I
10.1007/s00526-008-0203-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a C-2,C-alpha partial regularity result for local minimizers of polyconvex variational integrals of the type I(u) = integral(Omega)vertical bar D(2)u vertical bar(2) + g(det(D(2)u))dx, where Omega is a bounded open subset of R-2, u is an element of W-loc(2,2)(Omega) and g is an element of C-2(R) is a convex function, with subquadratic growth.
引用
收藏
页码:215 / 238
页数:24
相关论文
共 33 条
[1]  
ACERBI E, 1987, ARCH RATION MECH AN, V99, P261
[2]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[3]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[4]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[5]  
Bildhauer M, 2001, ANN ACAD SCI FENN-M, V26, P509
[6]   A regularity theorem for minimisers of quasiconvex integrals: The case 1<p<2 [J].
Carozza, M ;
diNapoli, AP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :1181-1199
[7]   Partial regularity of local minimizers of quasiconvex integrals with sub-quadratic growth [J].
Carozza, M ;
di Napoli, AP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1249-1262
[8]   Partial Regularity of Minimizers of Quasiconvex Integrals with Subquadratic Growth [J].
Carozza, Menita ;
Fusco, Nicola ;
Mingione, Giuseppe .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1998, 175 (01) :141-164
[9]   Partial regularity for anisotropic functionals of higher order [J].
Carozza, Menita ;
di Napoli, Antonia Passarelli .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (04) :692-706
[10]  
Carriero M., 1997, ANN SC NORM SUPER PI, V25, P257