Polynomial Lie algebra methods in solving the second-harmonic generation model: some exact and approximate calculations

被引:14
作者
Karassiov, VP
Gusev, AA
Vinitsky, SI [1 ]
机构
[1] Joint Inst Nucl Res Dubna, Dubna, Moscow Region, Russia
[2] PN Lebedev Phys Inst, Moscow 117924, Russia
基金
俄罗斯基础研究基金会;
关键词
second-harmonic generation model; polynomial Lie algebra methods;
D O I
10.1016/S0375-9601(02)00178-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare exact and SU(2)-cluster approximate calculation schemes to determine dynamics of the second-harmonic generation model using its reformulation in terms of a polynomial Lie algebra su(pd)(2) and related spectral representations of the model evolution operator realized in algorithmic forms. It enabled us to implement computer experiments exhibiting a satisfactory accuracy of the cluster approximations in a large range of characteristic model parameters. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 44 条
[31]  
KARASSIOV VP, 2001, OPT SPEKTROSK, V91, P568
[32]   Method of small rotations and effective Hamiltonians in nonlinear quantum optics [J].
Klimov, AB ;
Sanchez-Soto, LL .
PHYSICAL REVIEW A, 2000, 61 (06) :11
[33]  
KOBAYASHI S, 1969, DIFFERENTIAL GEOMETR, V2
[34]   QUANTUM FLUCTUATIONS IN 2ND-HARMONIC LIGHT GENERATION [J].
KOZIEROWSKI, M ;
TANAS, R .
OPTICS COMMUNICATIONS, 1977, 21 (02) :229-231
[35]  
Lankaster P., 1969, Theory of Matrices
[36]   QUANTUM-NOISE REDUCTION IN TRAVELING-WAVE 2ND-HARMONIC GENERATION [J].
LI, RD ;
KUMAR, P .
PHYSICAL REVIEW A, 1994, 49 (03) :2157-2166
[37]   SQUEEZING AND PHOTON ANTI-BUNCHING IN HARMONIC-GENERATION [J].
MANDEL, L .
OPTICS COMMUNICATIONS, 1982, 42 (06) :437-439
[38]   QUANTUM STATE EVOLUTION OF THE FUNDAMENTAL MODE IN THE PROCESS OF 2ND-HARMONIC GENERATION [J].
NIKITIN, SP ;
MASALOV, AV .
QUANTUM OPTICS, 1991, 3 (02) :105-113
[39]  
Olsen MK, 2000, PHYS REV A, V61, DOI 10.1103/PhysRevA.61.021803
[40]   PROPAGATION OF QUANTUM FLUCTUATIONS IN SINGLE-PASS 2ND-HARMONIC GENERATION FOR ARBITRARY INTERACTION LENGTH [J].
OU, ZY .
PHYSICAL REVIEW A, 1994, 49 (03) :2106-2116