Polynomial Lie algebra methods in solving the second-harmonic generation model: some exact and approximate calculations

被引:14
作者
Karassiov, VP
Gusev, AA
Vinitsky, SI [1 ]
机构
[1] Joint Inst Nucl Res Dubna, Dubna, Moscow Region, Russia
[2] PN Lebedev Phys Inst, Moscow 117924, Russia
基金
俄罗斯基础研究基金会;
关键词
second-harmonic generation model; polynomial Lie algebra methods;
D O I
10.1016/S0375-9601(02)00178-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare exact and SU(2)-cluster approximate calculation schemes to determine dynamics of the second-harmonic generation model using its reformulation in terms of a polynomial Lie algebra su(pd)(2) and related spectral representations of the model evolution operator realized in algorithmic forms. It enabled us to implement computer experiments exhibiting a satisfactory accuracy of the cluster approximations in a large range of characteristic model parameters. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 44 条
[1]  
[Anonymous], 1965, PERTURBATION THEORY
[2]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[3]  
AVERBUKH IS, 1989, ZH EKSP TEOR FIZ+, V96, P818
[4]   FRACTIONAL REVIVALS - UNIVERSALITY IN THE LONG-TERM EVOLUTION OF QUANTUM WAVE-PACKETS BEYOND THE CORRESPONDENCE PRINCIPLE DYNAMICS [J].
AVERBUKH, IS ;
PERELMAN, NF .
PHYSICS LETTERS A, 1989, 139 (09) :449-453
[5]   A Fortran 90-based multiprecision system [J].
Bailey, DH .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (04) :379-387
[6]   ALGORITHM 719 - MULTIPRECISION TRANSLATION AND EXECUTION OF FORTRAN PROGRAMS [J].
BAILEY, DH .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1993, 19 (03) :288-319
[7]   On the spectrum of a Hamilton defined on suq(2) and quantum optical models [J].
Ballesteros, A ;
Chumakov, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (35) :6261-6269
[8]   Nondegenerate parametric interactions and nonclassical effects [J].
Bandilla, A ;
Drobny, G ;
Jex, I .
PHYSICAL REVIEW A, 1996, 53 (01) :507-516
[9]  
Bloembergen N., 1965, NONLINEAR OPTICS
[10]   LARGE-N EXPANSIONS IN QUANTUM-MECHANICS, ATOMIC PHYSICS AND SOME O(N) INVARIANT-SYSTEMS [J].
CHATTERJEE, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 186 (06) :249-370